Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and aspen plus simulation

离子液体 萃取蒸馏 乙二醇 四甲基铵 化学 工艺工程 过程模拟 蒸馏 化学工程 过程(计算) 有机化学 计算机科学 催化作用 离子 操作系统 工程类
作者
Huzaifa Malik,Huma Warsi Khan,Mansoor Ul Hassan Shah,Muhammad Imran Ahmad,Iqra Khan,Abdullah A. Al‐Kahtani,Mika Sillanpää
出处
期刊:Chemosphere [Elsevier]
卷期号:311: 136901-136901 被引量:42
标识
DOI:10.1016/j.chemosphere.2022.136901
摘要

Ionic liquids (ILs) have been demonstrated as promising alternatives to conventional entrainers in separation of azeotropic mixtures mostly investigating phase equilibrium and process design scenarios. However, proper selection of ILs for a specific task always remains challenging. Hence a simulation tool, i.e. conductor like screening model for real solvents (COSMO-RS) was applied to address this challenge. Furthermore, screened ILs were simulated as entrainers for ethanol water separation by extractive distillation. The current study also aims to demonstrate a systematic approach to retrofit existing processes, by employing ILs as green entrainers. Screening of twenty-five (25) ILs was carried out using COSMO-RS to select suitable ILs as green entrainers based on activity coefficient, capacity and selectivity. Results illustrated that tetramethylammonium chloride ([TMAm][Cl]) due to its strong hydrogen bonding ability was found to be the best ILs entrainer. Moreover, in order to reduce the operating costs without compromising desired product purity (ethanol purity ≥99.5% in top product), the selected ILs (8 kg/h) in a mixture with ethylene glycol (72 kg/h) were simulated using Aspen plus v.11. The simulation results revealed that by combining tetramethylammonium chloride (2 kg/h) with ethylene glycol (78 kg/h) reduced 7.26 tons of CO2 emissions/year through heat integration by saving 1.49*108 kJ/year energy besides minimizing operating costs. In conclusion, the systematic selection of ILs as green entrainers in combination with ethylene glycol and then the appropriate simulation of the whole system will ultimately reduce the cost of the separation process and reduce the emission of greenhouse gases as well utilization of toxic conventional entrainers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故里完成签到,获得积分10
刚刚
认真帽子完成签到,获得积分20
1秒前
shame发布了新的文献求助10
1秒前
尚可完成签到 ,获得积分10
2秒前
2秒前
CR7完成签到,获得积分10
3秒前
蒋若之完成签到,获得积分10
3秒前
千玺的小粉丝儿完成签到,获得积分10
4秒前
可爱的函函应助thousandlong采纳,获得10
4秒前
5秒前
无糖全麦面包完成签到,获得积分10
5秒前
Jackson_Cai完成签到,获得积分10
5秒前
shgd完成签到 ,获得积分10
6秒前
zzd完成签到,获得积分10
6秒前
6秒前
summuryi发布了新的文献求助10
6秒前
7秒前
jessicazhong发布了新的文献求助10
7秒前
露亮发布了新的文献求助10
8秒前
木瓜发布了新的文献求助10
8秒前
van_完成签到,获得积分10
8秒前
9秒前
无私乐驹发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
夏xia完成签到 ,获得积分10
12秒前
王弘化应助wxyllxx采纳,获得10
12秒前
12秒前
12秒前
zzz完成签到,获得积分10
13秒前
有风塘完成签到,获得积分10
13秒前
superbanggg完成签到,获得积分10
13秒前
liangao发布了新的文献求助10
14秒前
tttttttt发布了新的文献求助10
14秒前
不懈奋进发布了新的文献求助10
15秒前
thousandlong发布了新的文献求助10
15秒前
大模型应助杨九斤Jenney采纳,获得10
16秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3318059
求助须知:如何正确求助?哪些是违规求助? 2949449
关于积分的说明 8546122
捐赠科研通 2625875
什么是DOI,文献DOI怎么找? 1436935
科研通“疑难数据库(出版商)”最低求助积分说明 666039
邀请新用户注册赠送积分活动 652042