Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and aspen plus simulation

离子液体 萃取蒸馏 乙二醇 四甲基铵 化学 工艺工程 过程模拟 蒸馏 化学工程 过程(计算) 有机化学 计算机科学 催化作用 离子 操作系统 工程类
作者
Huzaifa Malik,Huma Warsi Khan,Mansoor Ul Hassan Shah,Muhammad Imran Ahmad,Iqra Khan,Abdullah A. Al‐Kahtani,Mika Sillanpää
出处
期刊:Chemosphere [Elsevier]
卷期号:311: 136901-136901 被引量:51
标识
DOI:10.1016/j.chemosphere.2022.136901
摘要

Ionic liquids (ILs) have been demonstrated as promising alternatives to conventional entrainers in separation of azeotropic mixtures mostly investigating phase equilibrium and process design scenarios. However, proper selection of ILs for a specific task always remains challenging. Hence a simulation tool, i.e. conductor like screening model for real solvents (COSMO-RS) was applied to address this challenge. Furthermore, screened ILs were simulated as entrainers for ethanol water separation by extractive distillation. The current study also aims to demonstrate a systematic approach to retrofit existing processes, by employing ILs as green entrainers. Screening of twenty-five (25) ILs was carried out using COSMO-RS to select suitable ILs as green entrainers based on activity coefficient, capacity and selectivity. Results illustrated that tetramethylammonium chloride ([TMAm][Cl]) due to its strong hydrogen bonding ability was found to be the best ILs entrainer. Moreover, in order to reduce the operating costs without compromising desired product purity (ethanol purity ≥99.5% in top product), the selected ILs (8 kg/h) in a mixture with ethylene glycol (72 kg/h) were simulated using Aspen plus v.11. The simulation results revealed that by combining tetramethylammonium chloride (2 kg/h) with ethylene glycol (78 kg/h) reduced 7.26 tons of CO2 emissions/year through heat integration by saving 1.49*108 kJ/year energy besides minimizing operating costs. In conclusion, the systematic selection of ILs as green entrainers in combination with ethylene glycol and then the appropriate simulation of the whole system will ultimately reduce the cost of the separation process and reduce the emission of greenhouse gases as well utilization of toxic conventional entrainers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoliu发布了新的文献求助10
刚刚
Zhihu完成签到,获得积分10
刚刚
桐桐应助研友_Z7WPwZ采纳,获得10
刚刚
Owen应助abai采纳,获得10
刚刚
嫁接诺贝尔应助zfm采纳,获得10
刚刚
姜jiang发布了新的文献求助30
刚刚
CipherSage应助温大全采纳,获得10
1秒前
1秒前
1秒前
Runostp发布了新的文献求助10
1秒前
1秒前
lighting完成签到 ,获得积分10
1秒前
心怡发布了新的文献求助10
2秒前
传奇3应助小恺采纳,获得10
2秒前
CodeCraft应助一天采纳,获得10
2秒前
在水一方应助彩虹捕手采纳,获得10
2秒前
2秒前
whohol发布了新的文献求助10
3秒前
煎炒焖煮炸培根完成签到,获得积分10
3秒前
3秒前
我是老大应助陈成采纳,获得10
3秒前
科研通AI6应助木木采纳,获得30
3秒前
taco完成签到,获得积分20
3秒前
华仔应助泡泡糖采纳,获得10
4秒前
Xiaopan发布了新的文献求助10
4秒前
乐乐完成签到,获得积分10
4秒前
米歇尔完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
6秒前
aaron完成签到,获得积分10
6秒前
peiyaoyan发布了新的文献求助10
7秒前
小蘑菇应助姜jiang采纳,获得10
7秒前
7秒前
科研通AI6应助灰灰采纳,获得10
7秒前
甲乙丙丁发布了新的文献求助10
8秒前
111111完成签到 ,获得积分10
8秒前
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620157
求助须知:如何正确求助?哪些是违规求助? 4704645
关于积分的说明 14928760
捐赠科研通 4760959
什么是DOI,文献DOI怎么找? 2550765
邀请新用户注册赠送积分活动 1513518
关于科研通互助平台的介绍 1474498