反键分子轨道
材料科学
密度泛函理论
化学物理
结晶学
计算化学
物理
原子轨道
电子
化学
量子力学
作者
Duoduo Gao,Haoyu Long,Xuefei Wang,Jiaguo Yu,Huogen Yu
标识
DOI:10.1002/adfm.202209994
摘要
Abstract Electron density regulation of active sites can realize an optimal hydrogen‐binding strength, whereas the underlying regulation mechanism is still indistinct. Herein, a new concept of antibonding‐orbital occupancy state is first proposed to unveil the fundamental influence mechanism of electron density on the SeH ads bond strength for achieving first‐rank adsorption energy toward atomic hydrogen by constructing Se‐enriched surrounding to form electron‐deficient Se (2‐δ)‐ active sites in ReSe 2+ x nanodots. To this end, the Se‐rich ReSe 2+ x nanodots (0.3–1 nm) can be dexterously fabricated onto the TiO 2 to prepare Se‐rich ReSe 2+ x /TiO 2 by an ingenious one‐step photosynthesis route. In a surprise, a large number of visual H 2 bubbles are continuously produced on the resultant ReSe 2+ x /TiO 2 (0.7 wt.%) with an ultrahigh rate of 12 490.4 µmol h −1 g −1 and an apparent quantum efficiency of 60.0%, which is 5.0 times higher than that of traditional ReSe 2 /TiO 2 , even comparable with benchmark Pt/TiO 2 (0.7 wt.%). In situ/ex situ XPS characterizations coupled with density functional theory (DFT) calculations corroborate that a Se‐enriched environment can induce the formation of electron‐deficient Se (2‐δ)− and then reduce its antibonding‐orbital occupancy state, thus increasing the stability of H 1s‐p antibonding and accordingly reinforcing the SeH ads bonds. This holistic study identifies the dominant role of antibonding‐orbital occupancy states in the optimization of hydrogen‐binding energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI