Tailoring intersystem crossing of perylenediimide through chalcogen-substitution at bay-position: A theoretical perspective

系统间交叉 单重态 量子产额 硫族元素 三重态 化学 光化学 激发态 荧光 化学物理 分子 计算化学 结晶学 原子物理学 物理 量子力学 有机化学
作者
Raka Ahmed,Arun K. Manna
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:157 (21) 被引量:10
标识
DOI:10.1063/5.0126428
摘要

Molecular-scale design strategies for promoting intersystem crossing (ISC) in small organic molecules are ubiquitous in developing efficient metal-free triplet photosensitizers with high triplet quantum yield (ΦT). Air-stable and highly fluorescent perylenediimide (PDI) in its pristine form displays very small ISC compared to the fluorescence due to the large singlet–triplet gap (ΔES−T) and negligibly small spin–orbit coupling (SOC) between the lowest singlet (S1) and triplet state (T1). However, its ΦT can be tuned by different chemical and mechanical means that are capable of either directly lowering the ΔES−T and increasing SOC or introducing intermediate low-lying triplet states (Tn, n = 2, 3, …) between S1 and T1. To this end, herein, a few chalcogen (X = O, S, Se) bay-substituted PDIs (PDI-X2) are computationally modeled aiming at introducing geometrical-strain at the PDI core and also mixing nπ* orbital character to ππ* in the lowest singlet and triplet excited states, which altogether may reduce ΔES−T and also improve the SOC. Our quantum-chemical calculations based on optimally tuned range-separated hybrid reveal the presence of intermediate triplet states (Tn, n = 2, 3) in between S1 and T1 for all three PDI-X2 studied in dichloromethane. More importantly, PDI-X2 shows a significantly improved ISC rate than the pristine PDI due to the combined effects stemming from the smaller ΔES−T and the larger SOC. The calculated ISC rates follow the order as PDI-O2 < PDI-S2 < PDI-Se2. These research findings will be helpful in designing PDI based triplet photosensitizers for biomedical, sensing, and photonic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
繁星若尘发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
田様应助正直的怀蝶采纳,获得10
2秒前
2秒前
摸爬滚打完成签到,获得积分10
2秒前
狂野的薯片完成签到,获得积分10
3秒前
mermaid发布了新的文献求助10
3秒前
wanda发布了新的文献求助10
3秒前
肉肉发布了新的文献求助10
4秒前
DD47完成签到,获得积分20
5秒前
6秒前
6秒前
呆萌谷兰发布了新的文献求助10
7秒前
yanyimeng发布了新的文献求助10
7秒前
佩奇关注了科研通微信公众号
10秒前
Hxw发布了新的文献求助10
11秒前
关我屁事发布了新的文献求助20
11秒前
竹坞听荷发布了新的文献求助10
11秒前
JamesPei应助aka2012采纳,获得10
12秒前
13秒前
小昭发布了新的文献求助30
14秒前
1111完成签到,获得积分20
15秒前
斯文败类应助Hxw采纳,获得10
16秒前
16秒前
16秒前
18秒前
slow发布了新的文献求助10
18秒前
ANEWKID完成签到,获得积分10
19秒前
19秒前
yanna发布了新的文献求助100
19秒前
19秒前
21秒前
21秒前
Jasper应助YQ采纳,获得10
22秒前
wanda完成签到,获得积分20
22秒前
婷妞儿完成签到,获得积分10
22秒前
宜城发布了新的文献求助10
22秒前
爱吃蛋挞的亮仔完成签到,获得积分0
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271