清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tailoring intersystem crossing of perylenediimide through chalcogen-substitution at bay-position: A theoretical perspective

系统间交叉 单重态 量子产额 硫族元素 三重态 化学 光化学 激发态 荧光 化学物理 分子 计算化学 结晶学 原子物理学 物理 量子力学 有机化学
作者
Raka Ahmed,Arun K. Manna
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:157 (21) 被引量:10
标识
DOI:10.1063/5.0126428
摘要

Molecular-scale design strategies for promoting intersystem crossing (ISC) in small organic molecules are ubiquitous in developing efficient metal-free triplet photosensitizers with high triplet quantum yield (ΦT). Air-stable and highly fluorescent perylenediimide (PDI) in its pristine form displays very small ISC compared to the fluorescence due to the large singlet–triplet gap (ΔES−T) and negligibly small spin–orbit coupling (SOC) between the lowest singlet (S1) and triplet state (T1). However, its ΦT can be tuned by different chemical and mechanical means that are capable of either directly lowering the ΔES−T and increasing SOC or introducing intermediate low-lying triplet states (Tn, n = 2, 3, …) between S1 and T1. To this end, herein, a few chalcogen (X = O, S, Se) bay-substituted PDIs (PDI-X2) are computationally modeled aiming at introducing geometrical-strain at the PDI core and also mixing nπ* orbital character to ππ* in the lowest singlet and triplet excited states, which altogether may reduce ΔES−T and also improve the SOC. Our quantum-chemical calculations based on optimally tuned range-separated hybrid reveal the presence of intermediate triplet states (Tn, n = 2, 3) in between S1 and T1 for all three PDI-X2 studied in dichloromethane. More importantly, PDI-X2 shows a significantly improved ISC rate than the pristine PDI due to the combined effects stemming from the smaller ΔES−T and the larger SOC. The calculated ISC rates follow the order as PDI-O2 < PDI-S2 < PDI-Se2. These research findings will be helpful in designing PDI based triplet photosensitizers for biomedical, sensing, and photonic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倩倩14发布了新的文献求助20
5秒前
外向的芒果完成签到 ,获得积分10
10秒前
su完成签到 ,获得积分0
16秒前
shuoliu完成签到 ,获得积分10
19秒前
朱鑫汗发布了新的文献求助10
20秒前
genau000完成签到 ,获得积分10
21秒前
TOUHOUU完成签到 ,获得积分10
22秒前
自然代亦完成签到 ,获得积分10
26秒前
研友_VZG7GZ应助ceeray23采纳,获得20
29秒前
简啦啦完成签到 ,获得积分10
33秒前
42秒前
聪明的二休完成签到,获得积分10
42秒前
坚定蘑菇完成签到 ,获得积分10
45秒前
纳米果发布了新的文献求助10
48秒前
ding应助纳米果采纳,获得10
52秒前
xiaofeixia完成签到 ,获得积分10
55秒前
123完成签到 ,获得积分10
56秒前
Stella应助ceeray23采纳,获得20
58秒前
haralee完成签到 ,获得积分10
1分钟前
lx完成签到,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分0
1分钟前
甜乎贝贝完成签到 ,获得积分10
1分钟前
Ray完成签到 ,获得积分10
1分钟前
科研通AI2S应助倩倩14采纳,获得10
1分钟前
搜集达人应助xxsukixx采纳,获得10
1分钟前
gogogo完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xxsukixx发布了新的文献求助10
1分钟前
勤劳的颤完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
徐团伟完成签到 ,获得积分10
2分钟前
apt完成签到 ,获得积分10
2分钟前
keke发布了新的文献求助10
2分钟前
mark完成签到,获得积分10
2分钟前
alex12259完成签到 ,获得积分10
2分钟前
严冰蝶完成签到 ,获得积分10
2分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
2分钟前
Hao应助幽默的涵山采纳,获得10
2分钟前
刘丰完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612026
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890576
捐赠科研通 4730987
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310