捷克先令
锌黄锡矿
材料科学
晶界
晶粒生长
相(物质)
图层(电子)
粒度
硫化物
化学工程
光电子学
纳米技术
微观结构
冶金
化学
有机化学
工程类
作者
Xiaojie Yuan,Jianjun Li,Jialiang Huang,Chang Yan,Xin Cui,Kaiwen Sun,Jialin Cong,Mingrui He,Ao Wang,Guojun He,Arman Mahboubi Soufiani,Junjie Jiang,Yingtang Zhou,John A. Stride,Bram Hoex,Martin A. Green,Xiaojing Hao
出处
期刊:Small
[Wiley]
日期:2022-11-01
卷期号:18 (50)
被引量:21
标识
DOI:10.1002/smll.202204392
摘要
Small grain size and near-horizontal grain boundaries are known to be detrimental to the carrier collection efficiency and device performance of pure-sulfide Cu2 ZnSnS4 (CZTS) solar cells. However, forming large grains spanning the absorber layer while maintaining high electronic quality is challenging particularly for pure sulfide CZTS. Herein, a liquid-phase-assisted grain growth (LGG) model that enables the formation of large grains spanning across the CZTS absorber without compromising the electronic quality is demonstrated. By introducing a Ge-alloyed CZTS nanoparticle layer at the bottom of the sputtered precursor, a Cu-rich and Sn-rich liquid phase forms at the high temperature sulfurization stage, which can effectively remove the detrimental near-horizontal grain boundaries and promote grain growth, thus greatly improving the carrier collection efficiency and reducing nonradiative recombination. The remaining liquid phase layer at the rear interface shows a high work function, acting as an effective hole transport layer. The modified morphology greatly increases the short-circuit current density and fill factor, enabling 10.3% efficient green Cd-free CZTS devices. This work unlocks a grain growth mechanism, advancing the morphology control of sulfide-based kesterite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI