代谢组
转录组
生物化学
生物
热休克蛋白
蛋白质组
渗透压
代谢组学
非生物胁迫
生物信息学
基因
基因表达
代谢物
作者
Li-jun Chen,Zhe-Zhi Li,Xuan-wei Zhou,Xiaojing Xing,Bo Lv
标识
DOI:10.1016/j.envpol.2022.120763
摘要
High temperature and drought are abiotic stresses restricting many arthropods' survival and growth. Wolf spiders are poikilothermic arthropods that are vital in managing insects and pests. Nonetheless, investigating changes in spiders under temperature and drought stress are limited, especially at the molecular and gene expression levels. The study found that the combined effects of high temperature and drought stress significantly reduced survival rates and raised superoxide dismutase and malondialdehyde levels in the wolf spider Pardosa pseudoannulata. An integrated transcriptome and metabolome analysis showed that differentially expressed genes and metabolites were highly enriched in pathways involved in the proteolysis and oxidation-reduction process. The gene expression profiles displayed that heat shock protein (HSP) families (i.e., small heat shock protein, HSP70, HSP90, and HSP beta protein) were up-regulated under temperature and/or drought stresses. Additionally, a conjoint analysis revealed that under the combined stress, several important enzymes, including maltase-glucoamylase, glycerol-6-phosphate transporter, alanine-glyoxylate transaminase, and prostaglandin-H2 D-isomerase, were altered, affecting the metabolism of starch, sucrose, amino acids, and arachidonic acid. The protein interaction network further confirmed that under the combined stress, metabolic processes, peptide metabolic processes, and ATP generation from ADP were up-regulated, indicating that spiders could accelerate the metabolism of carbohydrates and proteins to combat stress and maintain homeostasis. Overall, this work showed that exposure to a combination of pressures might cause distinct defensive reactions in spiders and offered novel perspectives to research the molecular underpinnings of spider adaptation to a changing climate.
科研通智能强力驱动
Strongly Powered by AbleSci AI