High thermal storage ability and photothermal conversion capacity phase change capsule with graphene oxide covalently grafted silica shell

材料科学 共价键 化学工程 石墨烯 氧化物 相变材料 光热治疗 热稳定性 气凝胶 三乙氧基硅烷 纳米技术 热的 复合材料 有机化学 化学 物理 工程类 气象学 冶金
作者
Zetian Zhang,Yang Liu,Ze Liang,Fufen Li,Yong Yong,Zhengjun Li
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:657: 130594-130594 被引量:13
标识
DOI:10.1016/j.colsurfa.2022.130594
摘要

Preparation of phase change materials with energy collection, conversion and storage functions is considered to be an important way to solve the energy shortage problem. Hence, a novel phase change capsule ([email protected]) with photothermal conversion function was innovatively designed. In the process of preparing [email protected], the modified graphene oxide (MGO) layer was covalently anchored on the surface of the phase change capsule encapsulated by silica shell (EP) through Si-O-Si bonds, in which MGO was obtained by modifying GO nanosheets with isocyanate propyl triethoxysilane. The as-prepared [email protected] microcapsule presents favorable latent heat storage capacity, with enthalpy of 139.8 J/g and high encapsulation efficiency of 83.6%. Besides, the thermal stability, leakage-proof property, durability, and thermal reliability of [email protected] were enhanced significantly due to the physical protection effect provided by the SiO2-MGO double-layer shell. Moreover, the covalently MGO-grafted silica shell endows [email protected] with high thermal conductivity (1.603 W/m·K), which improves its thermal management efficiency. More importantly, [email protected] exhibits the potential ability to effectively utilize ultraviolet and visible light. In detail, the absorbance of [email protected] increased by ∼192% in the ultraviolet and visible light region (200–800 nm), and the photothermal conversion efficiency under near infrared (NIR) region as high as 64.4%, which has negligible change (64.2%) even after 50 times heating-cooling cycle. Therefore, the phase change capsule [email protected] provides a new idea for realizing efficient utilization of solar energy, and exhibits the application potential in biomedical treatment, smart textiles, and solar thermal collector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Deposit完成签到 ,获得积分10
刚刚
2秒前
愤怒的小兔子完成签到,获得积分10
2秒前
FashionBoy应助猫小乐C采纳,获得10
2秒前
3秒前
Kay发布了新的文献求助10
3秒前
焦星星完成签到 ,获得积分10
4秒前
Xingci发布了新的文献求助10
4秒前
xc完成签到,获得积分10
4秒前
欧ou发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
6秒前
我要发sci发布了新的文献求助10
6秒前
Crw__发布了新的文献求助10
6秒前
6秒前
爆米花应助咻咻采纳,获得10
7秒前
Sephirex发布了新的文献求助10
8秒前
小雨完成签到,获得积分10
8秒前
9秒前
9秒前
着急的绮露完成签到,获得积分20
11秒前
13秒前
Crw__完成签到,获得积分20
13秒前
13秒前
15秒前
希希发布了新的文献求助10
15秒前
幸世完成签到,获得积分10
17秒前
18秒前
18秒前
大模型应助发发疯吃饭采纳,获得10
18秒前
18秒前
tanqing完成签到,获得积分10
19秒前
奥一奥发布了新的文献求助30
19秒前
冷静新烟完成签到,获得积分10
20秒前
20秒前
zz发布了新的文献求助10
20秒前
可爱的函函应助暴走采纳,获得10
20秒前
受伤冰菱完成签到,获得积分10
20秒前
团团完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Co-Use of Alcohol and Cannabis: How Are They Related? 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5799295
求助须知:如何正确求助?哪些是违规求助? 5798781
关于积分的说明 15499670
捐赠科研通 4925751
什么是DOI,文献DOI怎么找? 2651626
邀请新用户注册赠送积分活动 1598681
关于科研通互助平台的介绍 1553565