人工智能
模式识别(心理学)
计算机科学
像素
先验概率
图形
可视化
特征(语言学)
特征提取
分类器(UML)
语言学
理论计算机科学
贝叶斯概率
哲学
作者
Shuo Li,Fang Liu,Licheng Jiao,Puhua Chen,Xu Liu,Lingling Li
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:31: 7306-7321
被引量:2
标识
DOI:10.1109/tip.2022.3220057
摘要
Since the superpixel segmentation method aggregates pixels based on similarity, the boundaries of some superpixels indicate the outline of the object and the superpixels provide prerequisites for learning structural-aware features. It is worthwhile to research how to utilize these superpixel priors effectively. In this work, by constructing the graph within superpixel and the graph among superpixels, we propose a novel Multi-level Feature Network (MFNet) based on graph neural network with the above superpixel priors. In our MFNet, we learn three-level features in a hierarchical way: from pixel-level feature to superpixel-level feature, and then to image-level feature. To solve the problem that the existing methods cannot represent superpixels well, we propose a superpixel representation method based on graph neural network, which takes the graph constructed by a single superpixel as input to extract the feature of the superpixel. To reflect the versatility of our MFNet, we apply it to an image-level prediction task and a pixel-level prediction task by designing different prediction modules. An attention linear classifier prediction module is proposed for image-level prediction tasks, such as image classification. An FC-based superpixel prediction module and a Decoder-based pixel prediction module are proposed for pixel-level prediction tasks, such as salient object detection. Our MFNet achieves competitive results on a number of datasets when compared with related methods. The visualization shows that the object boundaries and outline of the saliency maps predicted by our proposed MFNet are more refined and pay more attention to details.
科研通智能强力驱动
Strongly Powered by AbleSci AI