Cross validation for model selection: A review with examples from ecology

过度拟合 阿卡克信息准则 选型 交叉验证 选择(遗传算法) 计算机科学 信息标准 机器学习 航程(航空) 统计模型 人工智能 数据挖掘 生态学 工程类 生物 人工神经网络 航空航天工程
作者
Luke A. Yates,Zach Aandahl,Shane A. Richards,Barry W. Brook
出处
期刊:Ecological Monographs [Wiley]
卷期号:93 (1) 被引量:1
标识
DOI:10.1002/ecm.1557
摘要

Specifying, assessing, and selecting among candidate statistical models is fundamental to ecological research. Commonly used approaches to model selection are based on predictive scores and include information criteria such as Akaike's information criterion, and cross validation. Based on data splitting, cross validation is particularly versatile because it can be used even when it is not possible to derive a likelihood (e.g., many forms of machine learning) or count parameters precisely (e.g., mixed-effects models). However, much of the literature on cross validation is technical and spread across statistical journals, making it difficult for ecological analysts to assess and choose among the wide range of options. Here we provide a comprehensive, accessible review that explains important—but often overlooked—technical aspects of cross validation for model selection, such as: bias correction, estimation uncertainty, choice of scores, and selection rules to mitigate overfitting. We synthesize the relevant statistical advances to make recommendations for the choice of cross-validation technique and we present two ecological case studies to illustrate their application. In most instances, we recommend using exact or approximate leave-one-out cross validation to minimize bias, or otherwise k-fold with bias correction if k < 10. To mitigate overfitting when using cross validation, we recommend calibrated selection via our recently introduced modified one-standard-error rule. We advocate for the use of predictive scores in model selection across a range of typical modeling goals, such as exploration, hypothesis testing, and prediction, provided that models are specified in accordance with the stated goal. We also emphasize, as others have done, that inference on parameter estimates is biased if preceded by model selection and instead requires a carefully specified single model or further technical adjustments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关显锋发布了新的文献求助10
刚刚
239287发布了新的文献求助10
2秒前
nmamtf发布了新的文献求助10
3秒前
帕克完成签到,获得积分20
3秒前
Mercuryyy发布了新的文献求助10
3秒前
漂流平平发布了新的文献求助100
4秒前
FashionBoy应助dachengzi采纳,获得10
4秒前
5秒前
关显锋完成签到,获得积分10
5秒前
6秒前
深情安青应助漂亮幻莲采纳,获得10
6秒前
Linica完成签到,获得积分10
7秒前
7秒前
Guowei完成签到,获得积分10
8秒前
8秒前
8秒前
xiu发布了新的文献求助10
9秒前
zzz完成签到,获得积分10
10秒前
lailai完成签到 ,获得积分10
11秒前
YK完成签到,获得积分10
11秒前
11秒前
洋甘菊发布了新的文献求助10
12秒前
稳重的寻雪完成签到,获得积分10
12秒前
登登发布了新的文献求助10
12秒前
yiyi发布了新的文献求助10
13秒前
辛勤的灵薇完成签到,获得积分10
17秒前
星辰大海应助yiyi采纳,获得10
18秒前
19秒前
OnMyWorldside完成签到,获得积分10
19秒前
20秒前
动听的康乃馨完成签到,获得积分10
21秒前
23秒前
力量完成签到,获得积分10
23秒前
23秒前
yiyi完成签到,获得积分20
24秒前
24秒前
漂亮幻莲发布了新的文献求助10
25秒前
憨憨完成签到,获得积分10
26秒前
贺天完成签到 ,获得积分10
27秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258135
求助须知:如何正确求助?哪些是违规求助? 2899933
关于积分的说明 8308256
捐赠科研通 2569175
什么是DOI,文献DOI怎么找? 1395555
科研通“疑难数据库(出版商)”最低求助积分说明 653117
邀请新用户注册赠送积分活动 630990