Cross validation for model selection: A review with examples from ecology

过度拟合 阿卡克信息准则 选型 交叉验证 选择(遗传算法) 计算机科学 信息标准 机器学习 航程(航空) 统计模型 人工智能 数据挖掘 生态学 工程类 生物 人工神经网络 航空航天工程
作者
Luke A. Yates,Zach Aandahl,Shane A. Richards,Barry W. Brook
出处
期刊:Ecological Monographs [Wiley]
卷期号:93 (1) 被引量:1
标识
DOI:10.1002/ecm.1557
摘要

Specifying, assessing, and selecting among candidate statistical models is fundamental to ecological research. Commonly used approaches to model selection are based on predictive scores and include information criteria such as Akaike's information criterion, and cross validation. Based on data splitting, cross validation is particularly versatile because it can be used even when it is not possible to derive a likelihood (e.g., many forms of machine learning) or count parameters precisely (e.g., mixed-effects models). However, much of the literature on cross validation is technical and spread across statistical journals, making it difficult for ecological analysts to assess and choose among the wide range of options. Here we provide a comprehensive, accessible review that explains important—but often overlooked—technical aspects of cross validation for model selection, such as: bias correction, estimation uncertainty, choice of scores, and selection rules to mitigate overfitting. We synthesize the relevant statistical advances to make recommendations for the choice of cross-validation technique and we present two ecological case studies to illustrate their application. In most instances, we recommend using exact or approximate leave-one-out cross validation to minimize bias, or otherwise k-fold with bias correction if k < 10. To mitigate overfitting when using cross validation, we recommend calibrated selection via our recently introduced modified one-standard-error rule. We advocate for the use of predictive scores in model selection across a range of typical modeling goals, such as exploration, hypothesis testing, and prediction, provided that models are specified in accordance with the stated goal. We also emphasize, as others have done, that inference on parameter estimates is biased if preceded by model selection and instead requires a carefully specified single model or further technical adjustments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伏月八完成签到,获得积分10
刚刚
1秒前
1177发布了新的文献求助10
2秒前
2秒前
不爱吃姜发布了新的文献求助10
2秒前
小蘑菇应助滴答采纳,获得10
2秒前
3秒前
WD发布了新的文献求助10
3秒前
Gaoge完成签到 ,获得积分10
3秒前
4秒前
4秒前
千里完成签到,获得积分20
5秒前
李金奥完成签到,获得积分10
5秒前
归尘发布了新的文献求助10
5秒前
HotnessK完成签到,获得积分10
5秒前
6秒前
6秒前
x971017完成签到,获得积分10
6秒前
TuTuJie完成签到,获得积分10
7秒前
完美世界应助虎牙少年采纳,获得10
7秒前
8秒前
爆美发布了新的文献求助10
8秒前
jade257发布了新的文献求助10
9秒前
Asuna完成签到,获得积分10
9秒前
9秒前
小花排草发布了新的文献求助10
10秒前
1177完成签到,获得积分20
10秒前
我是老大应助机灵又蓝采纳,获得10
10秒前
pmh完成签到,获得积分10
10秒前
十有八九发布了新的文献求助10
11秒前
毛毛发布了新的文献求助30
12秒前
12秒前
细腻白曼关注了科研通微信公众号
15秒前
16秒前
18秒前
19秒前
wanwan应助1177采纳,获得10
19秒前
丘比特应助LaFee采纳,获得10
19秒前
ABJ完成签到 ,获得积分10
19秒前
椿人发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992152
求助须知:如何正确求助?哪些是违规求助? 3533140
关于积分的说明 11261281
捐赠科研通 3272545
什么是DOI,文献DOI怎么找? 1805855
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809439