Cross validation for model selection: A review with examples from ecology

过度拟合 阿卡克信息准则 选型 交叉验证 选择(遗传算法) 计算机科学 信息标准 机器学习 航程(航空) 统计模型 人工智能 数据挖掘 生态学 工程类 生物 人工神经网络 航空航天工程
作者
Luke A. Yates,Zach Aandahl,Shane A. Richards,Barry W. Brook
出处
期刊:Ecological Monographs [Wiley]
卷期号:93 (1) 被引量:1
标识
DOI:10.1002/ecm.1557
摘要

Specifying, assessing, and selecting among candidate statistical models is fundamental to ecological research. Commonly used approaches to model selection are based on predictive scores and include information criteria such as Akaike's information criterion, and cross validation. Based on data splitting, cross validation is particularly versatile because it can be used even when it is not possible to derive a likelihood (e.g., many forms of machine learning) or count parameters precisely (e.g., mixed-effects models). However, much of the literature on cross validation is technical and spread across statistical journals, making it difficult for ecological analysts to assess and choose among the wide range of options. Here we provide a comprehensive, accessible review that explains important—but often overlooked—technical aspects of cross validation for model selection, such as: bias correction, estimation uncertainty, choice of scores, and selection rules to mitigate overfitting. We synthesize the relevant statistical advances to make recommendations for the choice of cross-validation technique and we present two ecological case studies to illustrate their application. In most instances, we recommend using exact or approximate leave-one-out cross validation to minimize bias, or otherwise k-fold with bias correction if k < 10. To mitigate overfitting when using cross validation, we recommend calibrated selection via our recently introduced modified one-standard-error rule. We advocate for the use of predictive scores in model selection across a range of typical modeling goals, such as exploration, hypothesis testing, and prediction, provided that models are specified in accordance with the stated goal. We also emphasize, as others have done, that inference on parameter estimates is biased if preceded by model selection and instead requires a carefully specified single model or further technical adjustments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咖啡猫发布了新的文献求助10
刚刚
满怀完成签到,获得积分10
1秒前
温暖访枫发布了新的文献求助10
1秒前
无心的寄灵完成签到,获得积分10
1秒前
液氧发布了新的文献求助10
1秒前
WYX发布了新的文献求助10
1秒前
力量发布了新的文献求助10
2秒前
2秒前
wss完成签到 ,获得积分10
3秒前
小蘑菇应助小愚采纳,获得10
4秒前
达利园完成签到,获得积分10
4秒前
玉玉飞天龟完成签到,获得积分10
4秒前
4秒前
狄绮晴完成签到 ,获得积分10
4秒前
在水一方应助隐形傲霜采纳,获得10
4秒前
888发布了新的文献求助10
4秒前
sc完成签到,获得积分10
5秒前
溪风不渡发布了新的文献求助10
5秒前
5秒前
6秒前
阳光冰颜完成签到,获得积分10
7秒前
好久不见发布了新的文献求助10
7秒前
7秒前
Stella应助monoklatt采纳,获得10
7秒前
7秒前
香蕉觅云应助力量采纳,获得10
8秒前
8秒前
888完成签到,获得积分10
8秒前
司徒向彤发布了新的文献求助10
9秒前
9秒前
酷波er应助瑶瑶不落采纳,获得10
10秒前
蹦蹦咔咔完成签到,获得积分20
10秒前
10秒前
科研通AI6应助体贴的无色采纳,获得10
11秒前
hwq发布了新的文献求助10
11秒前
en发布了新的文献求助20
11秒前
壮观溪流发布了新的文献求助10
12秒前
侯总应助lpjianai168采纳,获得10
12秒前
恭喜发财发布了新的文献求助10
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240