Cross validation for model selection: A review with examples from ecology

过度拟合 阿卡克信息准则 选型 交叉验证 选择(遗传算法) 计算机科学 信息标准 机器学习 航程(航空) 统计模型 人工智能 数据挖掘 生态学 工程类 生物 人工神经网络 航空航天工程
作者
Luke A. Yates,Zach Aandahl,Shane A. Richards,Barry W. Brook
出处
期刊:Ecological Monographs [Wiley]
卷期号:93 (1) 被引量:1
标识
DOI:10.1002/ecm.1557
摘要

Specifying, assessing, and selecting among candidate statistical models is fundamental to ecological research. Commonly used approaches to model selection are based on predictive scores and include information criteria such as Akaike's information criterion, and cross validation. Based on data splitting, cross validation is particularly versatile because it can be used even when it is not possible to derive a likelihood (e.g., many forms of machine learning) or count parameters precisely (e.g., mixed-effects models). However, much of the literature on cross validation is technical and spread across statistical journals, making it difficult for ecological analysts to assess and choose among the wide range of options. Here we provide a comprehensive, accessible review that explains important—but often overlooked—technical aspects of cross validation for model selection, such as: bias correction, estimation uncertainty, choice of scores, and selection rules to mitigate overfitting. We synthesize the relevant statistical advances to make recommendations for the choice of cross-validation technique and we present two ecological case studies to illustrate their application. In most instances, we recommend using exact or approximate leave-one-out cross validation to minimize bias, or otherwise k-fold with bias correction if k < 10. To mitigate overfitting when using cross validation, we recommend calibrated selection via our recently introduced modified one-standard-error rule. We advocate for the use of predictive scores in model selection across a range of typical modeling goals, such as exploration, hypothesis testing, and prediction, provided that models are specified in accordance with the stated goal. We also emphasize, as others have done, that inference on parameter estimates is biased if preceded by model selection and instead requires a carefully specified single model or further technical adjustments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YES应助晾猫人采纳,获得10
刚刚
1秒前
科研通AI6应助Aaron采纳,获得200
2秒前
2秒前
3秒前
研友_VZG7GZ应助leahhhhhhhh采纳,获得10
4秒前
佳思思完成签到,获得积分10
5秒前
Mrmiss666发布了新的文献求助10
5秒前
M27发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
搜集达人应助qiang采纳,获得10
9秒前
梓镱儿完成签到,获得积分10
10秒前
yyds完成签到,获得积分0
11秒前
11秒前
11秒前
Mrmiss666完成签到,获得积分10
11秒前
12秒前
小不完成签到 ,获得积分10
13秒前
13秒前
科目三应助loewy采纳,获得10
14秒前
kkkkk完成签到,获得积分10
14秒前
阿喵完成签到 ,获得积分10
15秒前
cy完成签到,获得积分10
20秒前
噜噜噜完成签到 ,获得积分10
21秒前
小舒完成签到 ,获得积分10
22秒前
搜集达人应助陈妙莹采纳,获得10
23秒前
手拿大炮发布了新的文献求助10
24秒前
25秒前
28秒前
29秒前
30秒前
李兴起完成签到,获得积分10
30秒前
滴滴答答发布了新的文献求助10
30秒前
ccc发布了新的文献求助50
33秒前
不善良完成签到 ,获得积分10
33秒前
33秒前
33秒前
33秒前
33秒前
冬鹿发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420821
求助须知:如何正确求助?哪些是违规求助? 4535884
关于积分的说明 14151756
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442470
邀请新用户注册赠送积分活动 1433895
关于科研通互助平台的介绍 1410988