A review of automatic recognition technology for bird vocalizations in the deep learning era

计算机科学 领域(数学) 人工智能 机器学习 特征提取 特征(语言学) 深度学习 活动识别 一般化 数据科学 数学 语言学 数学分析 哲学 纯数学
作者
Jiangjian Xie,Yujie Zhong,Junguo Zhang,Shuo Liu,Changqing Ding,Andreas Triantafyllopoulos
出处
期刊:Ecological Informatics [Elsevier]
卷期号:73: 101927-101927 被引量:10
标识
DOI:10.1016/j.ecoinf.2022.101927
摘要

Birds are considered critical indicators of ecosystem condition. Automatic recording devices have emerged as a trending tool to assist field observations, contributing to biodiversity monitoring on large spatio-temporal scales. However, manually processing huge volumes of recordings is challenging. Consequently, there has been a growing interest in automatic bird vocalization recognition in recent years. Automatic bird vocalization recognition technology has advanced from classical pattern recognition to deep learning (DL), with significantly improved recognition performance. This paper reviews related works on DL-based automatic bird vocalization recognition technology in the last decade. In this review, we present the current state of research in the three key areas of pre-processing, feature extraction and recognition methods involved in automatic bird vocalization recognition. The related datasets, evaluation metrics and software are also summarized. Finally, existing challenges along with opportunities for future work are highlighted. We conclude that, while DL-based automatic bird vocalization recognition has made recent advances in specific species, more robust denoising approaches, larger public datasets, and stronger generalization capabilities of feature extraction and recognition are required to achieve reliable and general bird recognition in the wild. We expect that this review will serve as a firm foundation for new researchers working in the field of DL-based automatic bird vocalization recognition technologies, as well as become an insightful guide for computer science and ecology experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助zjky6r采纳,获得10
4秒前
JHL完成签到 ,获得积分10
9秒前
明亮的尔竹完成签到,获得积分10
11秒前
SharonDu完成签到 ,获得积分10
11秒前
都要多喝水完成签到,获得积分10
15秒前
东郭老九发布了新的文献求助20
17秒前
村口的帅老头完成签到 ,获得积分10
21秒前
和平使命应助科研通管家采纳,获得10
22秒前
22秒前
爱爱完成签到 ,获得积分10
25秒前
景觅波完成签到 ,获得积分10
25秒前
xfy完成签到,获得积分10
27秒前
清秀龙猫完成签到 ,获得积分10
29秒前
上官若男应助Wang采纳,获得10
31秒前
yw完成签到 ,获得积分10
31秒前
lllldjhdy完成签到 ,获得积分10
31秒前
guojingjing完成签到 ,获得积分10
31秒前
整齐的蜻蜓完成签到 ,获得积分10
33秒前
chorus完成签到 ,获得积分10
36秒前
hcdb完成签到,获得积分10
39秒前
CQ完成签到 ,获得积分10
40秒前
一颗煤炭完成签到 ,获得积分10
41秒前
顺心的问薇完成签到 ,获得积分10
49秒前
忧郁觅柔完成签到 ,获得积分10
49秒前
Joanne完成签到 ,获得积分10
55秒前
onedowmsk完成签到 ,获得积分10
1分钟前
WangJL完成签到 ,获得积分10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
英俊的铭应助xbq采纳,获得10
1分钟前
集典完成签到 ,获得积分10
1分钟前
无限猕猴桃完成签到,获得积分10
1分钟前
乐乐应助小布采纳,获得30
1分钟前
lingling完成签到 ,获得积分10
1分钟前
ybwei2008_163完成签到,获得积分10
1分钟前
野性的伟祺完成签到 ,获得积分10
1分钟前
我是老大应助尤海露采纳,获得10
1分钟前
小布完成签到,获得积分10
1分钟前
1分钟前
俊逸的盛男完成签到 ,获得积分10
1分钟前
科研通AI2S应助chorus采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555861
求助须知:如何正确求助?哪些是违规求助? 3131451
关于积分的说明 9391158
捐赠科研通 2831150
什么是DOI,文献DOI怎么找? 1556402
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890