微电子机械系统
分析物
谐振器
材料科学
电导率
鉴定(生物学)
氦
工作(物理)
分析化学(期刊)
主成分分析
丙酮
人工智能
计算机科学
光电子学
化学
色谱法
机械工程
工程类
物理
原子物理学
植物
物理化学
生物
有机化学
作者
Wagner B. Lenz,Usman Yaqoob,Rodrigo Tumolin Rocha,Mohammad I. Younis
出处
期刊:IEEE Sensors
日期:2022-10-30
卷期号:: 1-4
被引量:4
标识
DOI:10.1109/sensors52175.2022.9967178
摘要
This work demonstrates multiple gases identification using a heated MEMS resonator and machine learning. The working principle of the gas sensor is based on the cooling/heating effect of the injected gases on the electrothermally actuated micro beam. As a case study, we demonstrate the concept using two analytes: Acetone and Helium. Machine learning algorithms and Principal Component Analysis are employed to classify each gas with its specific concentration level. The results show that a 100% accuracy rate is achieved for the identification of the different analytes with their concentration levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI