An improved faster R-CNN algorithm for assisted detection of lung nodules

计算机科学 人工智能 肺癌 肺癌筛查 深度学习 阶段(地层学) 目标检测 癌症检测 结核(地质) 图像处理 计算机断层摄影术 模式识别(心理学) 放射科 计算机视觉 医学 图像(数学) 癌症 病理 内科学 古生物学 生物
作者
Jing Xu,Haojie Ren,Shenzhou Cai,Xiaoping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:153: 106470-106470 被引量:32
标识
DOI:10.1016/j.compbiomed.2022.106470
摘要

The morbidity and mortality of lung cancer are increasing rapidly in every country in the world, and pulmonary nodules are the main symptoms of lung cancer in the early stage. If we can diagnose pulmonary nodules in time at the early stage and follow up and treat suspicious patients, we can effectively reduce the incidence of lung cancer. CT (Computed Tomography) has been applied to the screening of many diseases because of its high resolution. Pulmonary nodules show white round shadows in CT images. With the popularity of CT equipment, doctors need to review a large number of imaging results every day. Doctors will misjudge and miss the lesions because of reviewing CT scanning results for a long time. At this time, the method of automatic detection of pulmonary nodules by computer can relieve the pressure of doctors in reviewing CT scan results. Traditional lung nodule detection methods, such as gray threshold method and region growing method, divide the detection process into two steps: extracting candidate regions and eliminating false regions. In addition, the traditional detection method can only operate on a single image, which leads to the inability of this method to detect the batch scanning results in real time. With the continuous development of computer equipment performance and artificial intelligence, the relationship between medical image processing and deep learning is getting closer and closer. In deep learning, object detection methods such as Faster R-CNN、YOLO can complete parallel detection of batch images, and deep structure can fully extract the features of input images. Compared with traditional lung nodule detection methods, it has the characteristics of high efficiency and high precision. Faster R-CNN is a classical and high-precision two-stage object detection method. In this paper, an improved Faster R-CNN model is proposed. On the basis of Faster R-CNN, multi-scale training strategy is used to fully mine the features of different scale spaces and perform path augmentation on lower-dimensional features, which improves the small object detection ability of the model. Through Online Hard Example Mining (OHEM), the loss value is used to quantify the difficulty of candidate region detection, and the training times of the region to be detected are adaptively adjusted. Make full use of prior information to customize the size and proportion of preset boundary anchor boxes. Using deformable convolution to improve the visual field to enhance the global features and enhance the ability to extract the feature information of pulmonary nodules in the same scale space. The new model was tested on LUNA16 (Lung Nodule Analysis 2016) dataset. The detection precision of the improved Faster R-CNN model for pulmonary nodules increased from 76.4% to 90.7%, and the recall rate increased from 40.1% to 56.8% Compared with the mainstream object detection algorithms YOLOv3 and Cascade R-CNN, the improved model is superior to the above models in every index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
簌落发布了新的文献求助20
刚刚
1秒前
瑞仔发布了新的文献求助10
2秒前
3秒前
3秒前
ddd完成签到,获得积分10
4秒前
iiianchen发布了新的文献求助10
4秒前
田様应助动听小甜瓜采纳,获得10
5秒前
7秒前
典雅碧空完成签到,获得积分20
7秒前
7秒前
8秒前
王伟完成签到,获得积分10
8秒前
zxy发布了新的文献求助10
9秒前
iiianchen完成签到,获得积分10
10秒前
小二郎应助高手中的糕手采纳,获得10
10秒前
10秒前
聂难敌发布了新的文献求助10
11秒前
YWang发布了新的文献求助10
13秒前
王伟发布了新的文献求助10
14秒前
14秒前
CodeCraft应助追寻天亦采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
香蕉觅云应助聂难敌采纳,获得10
16秒前
支初晴完成签到 ,获得积分10
17秒前
LOVER发布了新的文献求助10
18秒前
whykm91完成签到 ,获得积分10
18秒前
lkjh完成签到,获得积分10
19秒前
20秒前
琪琪的发布了新的文献求助10
21秒前
starr完成签到 ,获得积分10
21秒前
21秒前
23秒前
郑仕发布了新的文献求助10
23秒前
聂难敌完成签到,获得积分20
24秒前
科研通AI2S应助赵依乐采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145183
求助须知:如何正确求助?哪些是违规求助? 2796550
关于积分的说明 7820359
捐赠科研通 2452897
什么是DOI,文献DOI怎么找? 1305280
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449