An improved faster R-CNN algorithm for assisted detection of lung nodules

计算机科学 人工智能 肺癌 肺癌筛查 深度学习 阶段(地层学) 目标检测 癌症检测 结核(地质) 图像处理 计算机断层摄影术 模式识别(心理学) 放射科 计算机视觉 医学 图像(数学) 癌症 病理 内科学 古生物学 生物
作者
Jing Xu,Haojie Ren,Shenzhou Cai,Xiaoping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106470-106470 被引量:44
标识
DOI:10.1016/j.compbiomed.2022.106470
摘要

The morbidity and mortality of lung cancer are increasing rapidly in every country in the world, and pulmonary nodules are the main symptoms of lung cancer in the early stage. If we can diagnose pulmonary nodules in time at the early stage and follow up and treat suspicious patients, we can effectively reduce the incidence of lung cancer. CT (Computed Tomography) has been applied to the screening of many diseases because of its high resolution. Pulmonary nodules show white round shadows in CT images. With the popularity of CT equipment, doctors need to review a large number of imaging results every day. Doctors will misjudge and miss the lesions because of reviewing CT scanning results for a long time. At this time, the method of automatic detection of pulmonary nodules by computer can relieve the pressure of doctors in reviewing CT scan results. Traditional lung nodule detection methods, such as gray threshold method and region growing method, divide the detection process into two steps: extracting candidate regions and eliminating false regions. In addition, the traditional detection method can only operate on a single image, which leads to the inability of this method to detect the batch scanning results in real time. With the continuous development of computer equipment performance and artificial intelligence, the relationship between medical image processing and deep learning is getting closer and closer. In deep learning, object detection methods such as Faster R-CNN、YOLO can complete parallel detection of batch images, and deep structure can fully extract the features of input images. Compared with traditional lung nodule detection methods, it has the characteristics of high efficiency and high precision. Faster R-CNN is a classical and high-precision two-stage object detection method. In this paper, an improved Faster R-CNN model is proposed. On the basis of Faster R-CNN, multi-scale training strategy is used to fully mine the features of different scale spaces and perform path augmentation on lower-dimensional features, which improves the small object detection ability of the model. Through Online Hard Example Mining (OHEM), the loss value is used to quantify the difficulty of candidate region detection, and the training times of the region to be detected are adaptively adjusted. Make full use of prior information to customize the size and proportion of preset boundary anchor boxes. Using deformable convolution to improve the visual field to enhance the global features and enhance the ability to extract the feature information of pulmonary nodules in the same scale space. The new model was tested on LUNA16 (Lung Nodule Analysis 2016) dataset. The detection precision of the improved Faster R-CNN model for pulmonary nodules increased from 76.4% to 90.7%, and the recall rate increased from 40.1% to 56.8% Compared with the mainstream object detection algorithms YOLOv3 and Cascade R-CNN, the improved model is superior to the above models in every index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fragile发布了新的文献求助10
刚刚
山河发布了新的文献求助10
1秒前
幽魂发布了新的文献求助10
2秒前
4秒前
YH完成签到,获得积分10
6秒前
6秒前
anna1992发布了新的文献求助10
6秒前
孤独的电话完成签到,获得积分10
7秒前
8秒前
一只东北鸟完成签到 ,获得积分10
9秒前
立秋发布了新的文献求助10
9秒前
cdercder应助愤怒的qiang采纳,获得20
9秒前
9秒前
小楼发布了新的文献求助10
10秒前
乐观的涵菱完成签到,获得积分10
11秒前
Super发布了新的文献求助50
12秒前
12秒前
13秒前
笨笨十三完成签到 ,获得积分10
14秒前
澜生完成签到,获得积分10
15秒前
完美世界应助动人的老黑采纳,获得10
15秒前
Aoweia发布了新的文献求助10
16秒前
啵啵发布了新的文献求助10
18秒前
研友_LNMmW8发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
DJHKFD完成签到,获得积分10
19秒前
嘻嘻叮完成签到,获得积分10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
1226813885应助科研通管家采纳,获得10
19秒前
Qianbaor68应助科研通管家采纳,获得100
19秒前
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
20秒前
back you up应助科研通管家采纳,获得50
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792