亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved faster R-CNN algorithm for assisted detection of lung nodules

计算机科学 人工智能 肺癌 肺癌筛查 深度学习 阶段(地层学) 目标检测 癌症检测 结核(地质) 图像处理 计算机断层摄影术 模式识别(心理学) 放射科 计算机视觉 医学 图像(数学) 癌症 病理 内科学 古生物学 生物
作者
Jing Xu,Haojie Ren,Shenzhou Cai,Xiaoping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:153: 106470-106470 被引量:99
标识
DOI:10.1016/j.compbiomed.2022.106470
摘要

The morbidity and mortality of lung cancer are increasing rapidly in every country in the world, and pulmonary nodules are the main symptoms of lung cancer in the early stage. If we can diagnose pulmonary nodules in time at the early stage and follow up and treat suspicious patients, we can effectively reduce the incidence of lung cancer. CT (Computed Tomography) has been applied to the screening of many diseases because of its high resolution. Pulmonary nodules show white round shadows in CT images. With the popularity of CT equipment, doctors need to review a large number of imaging results every day. Doctors will misjudge and miss the lesions because of reviewing CT scanning results for a long time. At this time, the method of automatic detection of pulmonary nodules by computer can relieve the pressure of doctors in reviewing CT scan results. Traditional lung nodule detection methods, such as gray threshold method and region growing method, divide the detection process into two steps: extracting candidate regions and eliminating false regions. In addition, the traditional detection method can only operate on a single image, which leads to the inability of this method to detect the batch scanning results in real time. With the continuous development of computer equipment performance and artificial intelligence, the relationship between medical image processing and deep learning is getting closer and closer. In deep learning, object detection methods such as Faster R-CNN、YOLO can complete parallel detection of batch images, and deep structure can fully extract the features of input images. Compared with traditional lung nodule detection methods, it has the characteristics of high efficiency and high precision. Faster R-CNN is a classical and high-precision two-stage object detection method. In this paper, an improved Faster R-CNN model is proposed. On the basis of Faster R-CNN, multi-scale training strategy is used to fully mine the features of different scale spaces and perform path augmentation on lower-dimensional features, which improves the small object detection ability of the model. Through Online Hard Example Mining (OHEM), the loss value is used to quantify the difficulty of candidate region detection, and the training times of the region to be detected are adaptively adjusted. Make full use of prior information to customize the size and proportion of preset boundary anchor boxes. Using deformable convolution to improve the visual field to enhance the global features and enhance the ability to extract the feature information of pulmonary nodules in the same scale space. The new model was tested on LUNA16 (Lung Nodule Analysis 2016) dataset. The detection precision of the improved Faster R-CNN model for pulmonary nodules increased from 76.4% to 90.7%, and the recall rate increased from 40.1% to 56.8% Compared with the mainstream object detection algorithms YOLOv3 and Cascade R-CNN, the improved model is superior to the above models in every index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗在水中央完成签到 ,获得积分10
1秒前
wanna完成签到,获得积分10
1秒前
逢亮发布了新的文献求助10
2秒前
3秒前
Karry完成签到,获得积分10
5秒前
5秒前
wanna发布了新的文献求助10
6秒前
隐形曼青应助鼠鼠我啊采纳,获得10
8秒前
香蕉觅云应助读书的时候采纳,获得10
10秒前
白露完成签到 ,获得积分10
14秒前
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
17秒前
22秒前
hq完成签到 ,获得积分10
22秒前
24秒前
zzz发布了新的文献求助10
26秒前
Taylor122发布了新的文献求助10
26秒前
29秒前
29秒前
顾矜应助爱做实验的泡利采纳,获得10
32秒前
33秒前
34秒前
39秒前
39秒前
41秒前
鼠鼠我啊发布了新的文献求助10
42秒前
小白完成签到 ,获得积分10
43秒前
某某完成签到 ,获得积分10
49秒前
51秒前
土豆发布了新的文献求助10
57秒前
Re发布了新的文献求助10
57秒前
CodeCraft应助读书的时候采纳,获得10
1分钟前
1分钟前
武玉坤完成签到,获得积分10
1分钟前
鼠鼠我啊完成签到 ,获得积分10
1分钟前
丘比特应助wanna采纳,获得10
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739072
求助须知:如何正确求助?哪些是违规求助? 5383387
关于积分的说明 15339336
捐赠科研通 4881805
什么是DOI,文献DOI怎么找? 2623944
邀请新用户注册赠送积分活动 1572618
关于科研通互助平台的介绍 1529382