An improved faster R-CNN algorithm for assisted detection of lung nodules

计算机科学 人工智能 肺癌 肺癌筛查 深度学习 阶段(地层学) 目标检测 癌症检测 结核(地质) 图像处理 计算机断层摄影术 模式识别(心理学) 放射科 计算机视觉 医学 图像(数学) 癌症 病理 内科学 古生物学 生物
作者
Jing Xu,Haojie Ren,Shenzhou Cai,Xiaoping Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106470-106470 被引量:49
标识
DOI:10.1016/j.compbiomed.2022.106470
摘要

The morbidity and mortality of lung cancer are increasing rapidly in every country in the world, and pulmonary nodules are the main symptoms of lung cancer in the early stage. If we can diagnose pulmonary nodules in time at the early stage and follow up and treat suspicious patients, we can effectively reduce the incidence of lung cancer. CT (Computed Tomography) has been applied to the screening of many diseases because of its high resolution. Pulmonary nodules show white round shadows in CT images. With the popularity of CT equipment, doctors need to review a large number of imaging results every day. Doctors will misjudge and miss the lesions because of reviewing CT scanning results for a long time. At this time, the method of automatic detection of pulmonary nodules by computer can relieve the pressure of doctors in reviewing CT scan results. Traditional lung nodule detection methods, such as gray threshold method and region growing method, divide the detection process into two steps: extracting candidate regions and eliminating false regions. In addition, the traditional detection method can only operate on a single image, which leads to the inability of this method to detect the batch scanning results in real time. With the continuous development of computer equipment performance and artificial intelligence, the relationship between medical image processing and deep learning is getting closer and closer. In deep learning, object detection methods such as Faster R-CNN、YOLO can complete parallel detection of batch images, and deep structure can fully extract the features of input images. Compared with traditional lung nodule detection methods, it has the characteristics of high efficiency and high precision. Faster R-CNN is a classical and high-precision two-stage object detection method. In this paper, an improved Faster R-CNN model is proposed. On the basis of Faster R-CNN, multi-scale training strategy is used to fully mine the features of different scale spaces and perform path augmentation on lower-dimensional features, which improves the small object detection ability of the model. Through Online Hard Example Mining (OHEM), the loss value is used to quantify the difficulty of candidate region detection, and the training times of the region to be detected are adaptively adjusted. Make full use of prior information to customize the size and proportion of preset boundary anchor boxes. Using deformable convolution to improve the visual field to enhance the global features and enhance the ability to extract the feature information of pulmonary nodules in the same scale space. The new model was tested on LUNA16 (Lung Nodule Analysis 2016) dataset. The detection precision of the improved Faster R-CNN model for pulmonary nodules increased from 76.4% to 90.7%, and the recall rate increased from 40.1% to 56.8% Compared with the mainstream object detection algorithms YOLOv3 and Cascade R-CNN, the improved model is superior to the above models in every index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助KY Mr.WANG采纳,获得10
刚刚
黎明的第一道曙光完成签到,获得积分10
刚刚
刚刚
LIGHT完成签到,获得积分10
1秒前
传奇3应助猪猪hero采纳,获得10
1秒前
Tourist应助畅快的听枫采纳,获得30
2秒前
LDDD发布了新的文献求助10
2秒前
魔幻老黑完成签到,获得积分20
3秒前
打打应助猪突猛进采纳,获得10
3秒前
张二拿应助阿言采纳,获得10
3秒前
哈哈哈完成签到,获得积分10
3秒前
3秒前
congconglyu发布了新的文献求助10
3秒前
优雅的纸鹤完成签到,获得积分10
4秒前
chenamy完成签到,获得积分10
4秒前
4秒前
在水一方应助董菲音采纳,获得10
4秒前
lee发布了新的文献求助10
5秒前
平常如天完成签到,获得积分10
7秒前
852应助吱吱采纳,获得10
7秒前
十一苗完成签到 ,获得积分10
8秒前
慕青应助今晚打老虎采纳,获得10
8秒前
蒙蒙完成签到 ,获得积分10
9秒前
开天神秀完成签到,获得积分10
9秒前
orixero应助外向蜡烛采纳,获得10
9秒前
狗十七发布了新的文献求助10
9秒前
无私丹秋完成签到,获得积分10
10秒前
10秒前
10秒前
戌博完成签到,获得积分10
10秒前
英姑应助sh131采纳,获得10
10秒前
tang完成签到,获得积分10
11秒前
高高ai完成签到,获得积分10
12秒前
时刻保持质疑完成签到,获得积分10
12秒前
柴胡完成签到,获得积分10
12秒前
沉静胜发布了新的文献求助10
12秒前
1121完成签到 ,获得积分10
13秒前
研友_pnxBe8完成签到,获得积分10
13秒前
晓海完成签到,获得积分10
14秒前
tang发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942