亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VOSA: Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning

计算机科学 可验证秘密共享 信息隐私 密码学 计算机安全 互联网隐私 计算机网络 集合(抽象数据类型) 程序设计语言
作者
Yong Wang,Aiqing Zhang,Shu Wu,Shui Yu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 3601-3616 被引量:50
标识
DOI:10.1109/tdsc.2022.3226508
摘要

Federated learning has emerged as a promising paradigm by collaboratively training a global model through sharing local gradients without exposing raw data. However, the shared gradients pose a threat to privacy leakage of local data. The central server may forge the aggregated results. Besides, it is common that resource-constrained devices drop out in federated learning. To solve these problems, the existing solutions consider either only efficiency, or privacy preservation. It is still a challenge to design a verifiable and lightweight secure aggregation with drop-out resilience for large-scale federated learning. In this article, we propose VOSA, an efficient verifiable and oblivious secure aggregation protocol for privacy-preserving federated learning. We exploit aggregator oblivious encryption to efficiently mask users' local gradients. The central server performs aggregation on the obscured gradients without revealing the privacy of local data. Meanwhile, each user can efficiently verify the correctness of the aggregated results. Moreover, VOSA adopts a dynamic group management mechanism to tolerate users' dropping out with no impact on their participation in future learning process. Security analysis shows that the VOSA can guarantee the security requirements of privacy-preserving federated learning. The extensive experimental evaluations conducted on real-world datasets demonstrate the practical performance of the proposed VOSA with high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
14秒前
ohhhhhoho发布了新的文献求助10
16秒前
20秒前
21秒前
24秒前
烟消云散完成签到,获得积分10
24秒前
孙泉发布了新的文献求助10
26秒前
黎明前发布了新的文献求助10
28秒前
古今奇观完成签到 ,获得积分10
32秒前
黎明前完成签到,获得积分10
40秒前
44秒前
49秒前
Weiyu完成签到 ,获得积分10
52秒前
MiaCong完成签到 ,获得积分10
54秒前
阿玖完成签到 ,获得积分10
56秒前
完美世界应助zyw采纳,获得10
56秒前
57秒前
1分钟前
1分钟前
qc完成签到,获得积分20
1分钟前
qc发布了新的文献求助10
1分钟前
1分钟前
1分钟前
撒旦asd完成签到,获得积分20
1分钟前
1分钟前
1分钟前
撒旦asd发布了新的文献求助10
1分钟前
1分钟前
1分钟前
leyellows完成签到 ,获得积分10
1分钟前
取法乎上完成签到 ,获得积分10
1分钟前
安青兰完成签到 ,获得积分10
1分钟前
1分钟前
zyw完成签到,获得积分10
1分钟前
醉熏的灵完成签到 ,获得积分10
1分钟前
zyw发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731795
求助须知:如何正确求助?哪些是违规求助? 5333347
关于积分的说明 15321689
捐赠科研通 4877666
什么是DOI,文献DOI怎么找? 2620510
邀请新用户注册赠送积分活动 1569823
关于科研通互助平台的介绍 1526285