An EMD-LSTM Deep Learning Method for Aircraft Hydraulic System Fault Diagnosis under Different Environmental Noises

水力机械 断层(地质) 噪音(视频) 工程类 干扰(通信) 白噪声 人工智能 组分(热力学) 主成分分析 计算机科学 控制理论(社会学) 控制工程 频道(广播) 控制(管理) 地震学 地质学 物理 电气工程 图像(数学) 热力学 机械工程 电信
作者
Kenan Shen,Dongbiao Zhao
出处
期刊:Aerospace [MDPI AG]
卷期号:10 (1): 55-55 被引量:16
标识
DOI:10.3390/aerospace10010055
摘要

Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault diagnosis, complex environmental noises will lead to inaccurate results. To address the above problem, hydraulic system fault detection methods should be capable of noise resistance. Previous research has mainly focused on noise-free conditions and many effective approaches have been proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has strong and complex noises. The methods proposed may not have good fault detection results in such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system fault classification under the influence of a hydraulic working environment with Gaussian white noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM. One normal state and five fault states are considered in this paper. Eight-channel signals of different states are collected for network training and testing. Second, the EMD method is used to obtain the different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the network parameters are optimized. The results under different noise environments are given. Then, a comparison between the EMD-GRU with several different machine learning methods is considered, and the result shows that the method in this paper has a better anti-noise effect. Therefore, the proposed method is demonstrated to have a strong ability of fault diagnosis and classification under the working noises based on the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllllkkkj完成签到,获得积分10
刚刚
1秒前
1秒前
余德熙发布了新的文献求助10
1秒前
1秒前
2秒前
哈密瓜完成签到,获得积分10
3秒前
77777完成签到,获得积分20
4秒前
4秒前
烟花应助体贴的小天鹅采纳,获得10
4秒前
自觉元霜完成签到,获得积分10
5秒前
陈豆豆发布了新的文献求助10
6秒前
6秒前
勤奋的大便发布了新的文献求助150
6秒前
量子星尘发布了新的文献求助10
7秒前
qqqqqq完成签到,获得积分10
9秒前
茜你亦首歌完成签到,获得积分10
9秒前
洛城l发布了新的文献求助10
9秒前
chouchou完成签到,获得积分10
10秒前
传奇3应助陈豆豆采纳,获得10
10秒前
飞飞鱼完成签到 ,获得积分10
11秒前
Jankin发布了新的文献求助10
12秒前
欢呼的傲旋完成签到,获得积分10
14秒前
CipherSage应助mo采纳,获得30
14秒前
14秒前
无情静柏完成签到 ,获得积分20
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
杨小鸿发布了新的文献求助10
17秒前
19秒前
上官若男应助SHARK采纳,获得10
19秒前
20秒前
完美世界应助月圆夜采纳,获得10
21秒前
22秒前
23秒前
刘勤杰发布了新的文献求助10
23秒前
ll完成签到,获得积分10
23秒前
搜集达人应助嘿嘿采纳,获得10
24秒前
西米露完成签到 ,获得积分10
26秒前
绾舟发布了新的文献求助10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093