An EMD-LSTM Deep Learning Method for Aircraft Hydraulic System Fault Diagnosis under Different Environmental Noises

水力机械 断层(地质) 噪音(视频) 工程类 干扰(通信) 白噪声 人工智能 组分(热力学) 主成分分析 计算机科学 控制理论(社会学) 控制工程 频道(广播) 机械工程 电信 物理 电气工程 控制(管理) 地震学 图像(数学) 热力学 地质学
作者
Kenan Shen,Dongbiao Zhao
出处
期刊:Aerospace [Multidisciplinary Digital Publishing Institute]
卷期号:10 (1): 55-55 被引量:16
标识
DOI:10.3390/aerospace10010055
摘要

Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault diagnosis, complex environmental noises will lead to inaccurate results. To address the above problem, hydraulic system fault detection methods should be capable of noise resistance. Previous research has mainly focused on noise-free conditions and many effective approaches have been proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has strong and complex noises. The methods proposed may not have good fault detection results in such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system fault classification under the influence of a hydraulic working environment with Gaussian white noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM. One normal state and five fault states are considered in this paper. Eight-channel signals of different states are collected for network training and testing. Second, the EMD method is used to obtain the different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the network parameters are optimized. The results under different noise environments are given. Then, a comparison between the EMD-GRU with several different machine learning methods is considered, and the result shows that the method in this paper has a better anti-noise effect. Therefore, the proposed method is demonstrated to have a strong ability of fault diagnosis and classification under the working noises based on the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66868发布了新的文献求助10
刚刚
tt发布了新的文献求助10
刚刚
小李子发布了新的文献求助10
2秒前
1q1q完成签到 ,获得积分10
2秒前
拼搏灵安完成签到,获得积分10
3秒前
温婉的曼冬完成签到,获得积分10
3秒前
科研通AI5应助懒人采纳,获得10
3秒前
小小冯发布了新的文献求助10
4秒前
4秒前
李某某发布了新的文献求助10
5秒前
5秒前
科研通AI6应助如意翡翠采纳,获得10
6秒前
6秒前
溆玉碎兰笑完成签到 ,获得积分10
7秒前
能闭嘴吗完成签到 ,获得积分10
7秒前
8秒前
bkagyin应助温婉的曼冬采纳,获得10
8秒前
Sch完成签到,获得积分10
8秒前
JamesTYD发布了新的文献求助10
9秒前
氨气完成签到 ,获得积分10
9秒前
学术搭子发布了新的文献求助10
9秒前
10秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
pping完成签到,获得积分10
11秒前
可爱的函函应助小小冯采纳,获得10
11秒前
科研通AI5应助谨慎小懒猪采纳,获得10
12秒前
Hello应助虚幻盼晴采纳,获得10
12秒前
Owen应助刘奕采纳,获得10
13秒前
懒人完成签到,获得积分10
14秒前
黄聃发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助ml采纳,获得10
15秒前
平常的秋蝶完成签到,获得积分10
16秒前
螺蛳粉完成签到,获得积分10
18秒前
18秒前
哎咦随风起完成签到,获得积分10
19秒前
19秒前
19秒前
情怀应助任性机器猫采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4969243
求助须知:如何正确求助?哪些是违规求助? 4226417
关于积分的说明 13162704
捐赠科研通 4013780
什么是DOI,文献DOI怎么找? 2196297
邀请新用户注册赠送积分活动 1209551
关于科研通互助平台的介绍 1123640