An EMD-LSTM Deep Learning Method for Aircraft Hydraulic System Fault Diagnosis under Different Environmental Noises

水力机械 断层(地质) 噪音(视频) 工程类 干扰(通信) 白噪声 人工智能 组分(热力学) 主成分分析 计算机科学 控制理论(社会学) 控制工程 频道(广播) 控制(管理) 地震学 地质学 物理 电气工程 图像(数学) 热力学 机械工程 电信
作者
Kenan Shen,Dongbiao Zhao
出处
期刊:Aerospace [MDPI AG]
卷期号:10 (1): 55-55 被引量:16
标识
DOI:10.3390/aerospace10010055
摘要

Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault diagnosis, complex environmental noises will lead to inaccurate results. To address the above problem, hydraulic system fault detection methods should be capable of noise resistance. Previous research has mainly focused on noise-free conditions and many effective approaches have been proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has strong and complex noises. The methods proposed may not have good fault detection results in such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system fault classification under the influence of a hydraulic working environment with Gaussian white noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM. One normal state and five fault states are considered in this paper. Eight-channel signals of different states are collected for network training and testing. Second, the EMD method is used to obtain the different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the network parameters are optimized. The results under different noise environments are given. Then, a comparison between the EMD-GRU with several different machine learning methods is considered, and the result shows that the method in this paper has a better anti-noise effect. Therefore, the proposed method is demonstrated to have a strong ability of fault diagnosis and classification under the working noises based on the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助过时的小萱采纳,获得30
1秒前
缥缈的忆山完成签到,获得积分10
1秒前
学术蝗虫完成签到,获得积分10
2秒前
7777777发布了新的文献求助10
3秒前
凌奕添完成签到 ,获得积分10
4秒前
yeheifenggao关注了科研通微信公众号
4秒前
桐桐应助KaleemUllah采纳,获得10
6秒前
7秒前
小芭乐完成签到 ,获得积分10
8秒前
8秒前
CHENHL完成签到,获得积分10
11秒前
Miracle完成签到,获得积分0
11秒前
思源应助胡图图采纳,获得10
12秒前
欢喜小霸王完成签到,获得积分10
13秒前
Believer完成签到,获得积分10
14秒前
14秒前
mm完成签到,获得积分10
15秒前
15秒前
科研通AI6.1应助wuxunxun2015采纳,获得10
17秒前
Arain完成签到,获得积分20
18秒前
白小超人完成签到 ,获得积分10
18秒前
18秒前
19秒前
Arain发布了新的文献求助10
23秒前
乔滴滴发布了新的文献求助10
23秒前
Shi完成签到,获得积分10
23秒前
耍酷曼青完成签到,获得积分10
23秒前
科研通AI6.1应助容棋采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
无花果应助hdd采纳,获得10
24秒前
一顿鸡米花完成签到,获得积分10
25秒前
26秒前
脑洞疼应助希希采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
激动的访文完成签到,获得积分10
26秒前
27秒前
火星上唇膏完成签到 ,获得积分10
28秒前
所所应助Darling采纳,获得10
28秒前
28秒前
Doki完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734883
求助须知:如何正确求助?哪些是违规求助? 5356945
关于积分的说明 15327966
捐赠科研通 4879384
什么是DOI,文献DOI怎么找? 2621880
邀请新用户注册赠送积分活动 1571089
关于科研通互助平台的介绍 1527872