An EMD-LSTM Deep Learning Method for Aircraft Hydraulic System Fault Diagnosis under Different Environmental Noises

水力机械 断层(地质) 噪音(视频) 工程类 干扰(通信) 白噪声 人工智能 组分(热力学) 主成分分析 计算机科学 控制理论(社会学) 控制工程 频道(广播) 机械工程 电信 物理 电气工程 控制(管理) 地震学 图像(数学) 热力学 地质学
作者
Kenan Shen,Dongbiao Zhao
出处
期刊:Aerospace [MDPI AG]
卷期号:10 (1): 55-55 被引量:16
标识
DOI:10.3390/aerospace10010055
摘要

Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault diagnosis, complex environmental noises will lead to inaccurate results. To address the above problem, hydraulic system fault detection methods should be capable of noise resistance. Previous research has mainly focused on noise-free conditions and many effective approaches have been proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has strong and complex noises. The methods proposed may not have good fault detection results in such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system fault classification under the influence of a hydraulic working environment with Gaussian white noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM. One normal state and five fault states are considered in this paper. Eight-channel signals of different states are collected for network training and testing. Second, the EMD method is used to obtain the different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the network parameters are optimized. The results under different noise environments are given. Then, a comparison between the EMD-GRU with several different machine learning methods is considered, and the result shows that the method in this paper has a better anti-noise effect. Therefore, the proposed method is demonstrated to have a strong ability of fault diagnosis and classification under the working noises based on the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
wangkun090121完成签到,获得积分10
1秒前
1秒前
大模型应助浮世采纳,获得10
2秒前
huang发布了新的文献求助10
2秒前
2秒前
2秒前
月蚀六花发布了新的文献求助30
3秒前
隐形曼青应助小兔叽采纳,获得10
3秒前
3秒前
田様应助hahhhhhh2采纳,获得10
3秒前
充电宝应助WN采纳,获得10
3秒前
栗子完成签到,获得积分10
3秒前
多情遥完成签到,获得积分10
3秒前
精明寒蕾完成签到,获得积分10
3秒前
4秒前
4秒前
TYG完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
丽小杰完成签到,获得积分10
5秒前
triptalk完成签到,获得积分10
5秒前
墨尘发布了新的文献求助30
5秒前
黑黑黑完成签到,获得积分10
6秒前
6秒前
6秒前
qingxinhuo完成签到 ,获得积分10
6秒前
动听锦程发布了新的文献求助10
7秒前
乐乐应助玖a采纳,获得10
7秒前
杨松发布了新的文献求助10
8秒前
科研通AI6应助人123456采纳,获得10
8秒前
AAA完成签到,获得积分10
8秒前
看不完完成签到,获得积分10
8秒前
9秒前
清脆泥猴桃完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066