An EMD-LSTM Deep Learning Method for Aircraft Hydraulic System Fault Diagnosis under Different Environmental Noises

水力机械 断层(地质) 噪音(视频) 工程类 干扰(通信) 白噪声 人工智能 组分(热力学) 主成分分析 计算机科学 控制理论(社会学) 控制工程 频道(广播) 控制(管理) 地震学 地质学 物理 电气工程 图像(数学) 热力学 机械工程 电信
作者
Kenan Shen,Dongbiao Zhao
出处
期刊:Aerospace [MDPI AG]
卷期号:10 (1): 55-55 被引量:16
标识
DOI:10.3390/aerospace10010055
摘要

Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault diagnosis, complex environmental noises will lead to inaccurate results. To address the above problem, hydraulic system fault detection methods should be capable of noise resistance. Previous research has mainly focused on noise-free conditions and many effective approaches have been proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has strong and complex noises. The methods proposed may not have good fault detection results in such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system fault classification under the influence of a hydraulic working environment with Gaussian white noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM. One normal state and five fault states are considered in this paper. Eight-channel signals of different states are collected for network training and testing. Second, the EMD method is used to obtain the different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the network parameters are optimized. The results under different noise environments are given. Then, a comparison between the EMD-GRU with several different machine learning methods is considered, and the result shows that the method in this paper has a better anti-noise effect. Therefore, the proposed method is demonstrated to have a strong ability of fault diagnosis and classification under the working noises based on the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
koi完成签到,获得积分10
刚刚
在水一方应助徊阳采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
香蕉觅云应助桀庚采纳,获得10
1秒前
天明完成签到,获得积分10
1秒前
丹dan完成签到,获得积分10
1秒前
代宇完成签到,获得积分10
2秒前
孤独的迎滑完成签到,获得积分10
2秒前
yangchang发布了新的文献求助10
2秒前
2秒前
zz发布了新的文献求助10
2秒前
李景明完成签到,获得积分10
2秒前
顺利毕业发布了新的文献求助10
2秒前
汉堡包应助徐什么宝采纳,获得10
2秒前
nicoleJ发布了新的文献求助10
2秒前
科研小白完成签到,获得积分10
3秒前
隐形曼青应助koi采纳,获得10
3秒前
Liu_cx完成签到,获得积分10
4秒前
chenyu发布了新的文献求助10
4秒前
4秒前
humble完成签到 ,获得积分10
4秒前
狂野谷槐完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
77完成签到,获得积分10
5秒前
脑洞疼应助aerfas采纳,获得10
6秒前
何文艺完成签到,获得积分10
6秒前
代宇发布了新的文献求助10
6秒前
顺利毕业完成签到,获得积分10
6秒前
xiaomei完成签到,获得积分10
6秒前
老迟到的泡芙完成签到,获得积分10
6秒前
guoyongkai完成签到,获得积分10
6秒前
7秒前
充电宝应助jayyyyyyy21采纳,获得10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699035
求助须知:如何正确求助?哪些是违规求助? 5128682
关于积分的说明 15224205
捐赠科研通 4854021
什么是DOI,文献DOI怎么找? 2604437
邀请新用户注册赠送积分活动 1555924
关于科研通互助平台的介绍 1514247