An EMD-LSTM Deep Learning Method for Aircraft Hydraulic System Fault Diagnosis under Different Environmental Noises

水力机械 断层(地质) 噪音(视频) 工程类 干扰(通信) 白噪声 人工智能 组分(热力学) 主成分分析 计算机科学 控制理论(社会学) 控制工程 频道(广播) 控制(管理) 地震学 地质学 物理 电气工程 图像(数学) 热力学 机械工程 电信
作者
Kenan Shen,Dongbiao Zhao
出处
期刊:Aerospace [MDPI AG]
卷期号:10 (1): 55-55 被引量:16
标识
DOI:10.3390/aerospace10010055
摘要

Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault diagnosis, complex environmental noises will lead to inaccurate results. To address the above problem, hydraulic system fault detection methods should be capable of noise resistance. Previous research has mainly focused on noise-free conditions and many effective approaches have been proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has strong and complex noises. The methods proposed may not have good fault detection results in such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system fault classification under the influence of a hydraulic working environment with Gaussian white noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM. One normal state and five fault states are considered in this paper. Eight-channel signals of different states are collected for network training and testing. Second, the EMD method is used to obtain the different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the network parameters are optimized. The results under different noise environments are given. Then, a comparison between the EMD-GRU with several different machine learning methods is considered, and the result shows that the method in this paper has a better anti-noise effect. Therefore, the proposed method is demonstrated to have a strong ability of fault diagnosis and classification under the working noises based on the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
西西完成签到,获得积分10
3秒前
bkagyin应助万里采纳,获得10
5秒前
7秒前
标致惋庭完成签到,获得积分10
8秒前
英勇初曼发布了新的文献求助10
8秒前
12305014077完成签到 ,获得积分10
10秒前
10秒前
11秒前
Ephemeral完成签到,获得积分10
11秒前
科研通AI6.2应助倩青春采纳,获得10
11秒前
li完成签到,获得积分10
11秒前
小小鱼完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
小刘完成签到,获得积分10
15秒前
大模型应助北顾采纳,获得30
15秒前
阳光初夏发布了新的文献求助10
16秒前
54545发布了新的文献求助10
16秒前
16秒前
轨迹应助你好采纳,获得10
17秒前
大个应助友好的哈密瓜采纳,获得10
17秒前
nuo发布了新的文献求助10
19秒前
从容的香菇完成签到,获得积分10
25秒前
科研通AI2S应助熊阿阿采纳,获得10
25秒前
wdy发布了新的文献求助10
28秒前
英俊的铭应助万里采纳,获得10
28秒前
钱来完成签到,获得积分10
34秒前
香蕉觅云应助YHL采纳,获得10
35秒前
37秒前
38秒前
yueyueyeu完成签到,获得积分10
39秒前
gua发布了新的文献求助10
41秒前
shiyu发布了新的文献求助10
44秒前
完美世界应助傲娇衬衫采纳,获得10
45秒前
所所应助万里采纳,获得10
47秒前
48秒前
50秒前
张靖松完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
生活在欺瞒的年代:傅树介政治斗争回忆录 260
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877835
求助须知:如何正确求助?哪些是违规求助? 6546577
关于积分的说明 15682445
捐赠科研通 4996585
什么是DOI,文献DOI怎么找? 2692758
邀请新用户注册赠送积分活动 1634760
关于科研通互助平台的介绍 1592441