An EMD-LSTM Deep Learning Method for Aircraft Hydraulic System Fault Diagnosis under Different Environmental Noises

水力机械 断层(地质) 噪音(视频) 工程类 干扰(通信) 白噪声 人工智能 组分(热力学) 主成分分析 计算机科学 控制理论(社会学) 控制工程 频道(广播) 机械工程 电信 物理 电气工程 控制(管理) 地震学 图像(数学) 热力学 地质学
作者
Kenan Shen,Dongbiao Zhao
出处
期刊:Aerospace [Multidisciplinary Digital Publishing Institute]
卷期号:10 (1): 55-55 被引量:16
标识
DOI:10.3390/aerospace10010055
摘要

Aircraft hydraulic fault diagnosis is an important technique in aircraft systems, as the hydraulic system is one of the key components of an aircraft. In aircraft hydraulic system fault diagnosis, complex environmental noises will lead to inaccurate results. To address the above problem, hydraulic system fault detection methods should be capable of noise resistance. Previous research has mainly focused on noise-free conditions and many effective approaches have been proposed; however, in real-world aircraft flying conditions, the aircraft hydraulic system often has strong and complex noises. The methods proposed may not have good fault detection results in such a noisy environment. According to the situation, this work focuses on aircraft hydraulic system fault classification under the influence of a hydraulic working environment with Gaussian white noise. In order to eliminate the noise interference and adapt to the actual noisy environment, a new aircraft hydraulic fault diagnostic method based on empirical mode deposition (EMD) and long short-term memory (LSTM) is presented. First, the hydraulic system is constructed by AMESIM. One normal state and five fault states are considered in this paper. Eight-channel signals of different states are collected for network training and testing. Second, the EMD method is used to obtain the different intrinsic mode functions (IMFs) of the signals. Third, principal component analysis (PCA) is used to obtain the main component of the IMFs. Fourth, three different LSTM methods are chosen to compare and the best structure that is chosen is the gate recurrent unit (GRU). After that, the network parameters are optimized. The results under different noise environments are given. Then, a comparison between the EMD-GRU with several different machine learning methods is considered, and the result shows that the method in this paper has a better anti-noise effect. Therefore, the proposed method is demonstrated to have a strong ability of fault diagnosis and classification under the working noises based on the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pj发布了新的文献求助10
1秒前
2秒前
苏嘉完成签到,获得积分10
4秒前
5秒前
贝壳发布了新的文献求助10
5秒前
吃的了细糠的山猪完成签到,获得积分10
5秒前
巴黎的防发布了新的文献求助10
5秒前
海贼学术完成签到 ,获得积分10
6秒前
Hello应助pj采纳,获得10
7秒前
bkagyin应助lijunliang采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
阳光的紊应助lisa采纳,获得10
15秒前
ernest发布了新的文献求助10
17秒前
华仔应助panda采纳,获得10
20秒前
空白幻想丶完成签到,获得积分10
21秒前
23秒前
YE完成签到,获得积分10
23秒前
Zzong应助电磁炮采纳,获得10
24秒前
dongdongqiang发布了新的文献求助30
27秒前
张星星完成签到 ,获得积分10
28秒前
29秒前
scsc发布了新的文献求助10
30秒前
传奇3应助肉肉抱大腿采纳,获得10
30秒前
Lucas应助ernest采纳,获得30
33秒前
34秒前
大模型应助clairr采纳,获得10
35秒前
36秒前
37秒前
panda发布了新的文献求助10
38秒前
41秒前
五五发布了新的文献求助10
42秒前
maymei发布了新的文献求助10
43秒前
专一的小馒头完成签到,获得积分10
43秒前
Grace完成签到,获得积分10
43秒前
scsc完成签到,获得积分10
45秒前
45秒前
小宅女关注了科研通微信公众号
47秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962497
求助须知:如何正确求助?哪些是违规求助? 3508510
关于积分的说明 11141528
捐赠科研通 3241254
什么是DOI,文献DOI怎么找? 1791452
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803455