材料科学
降级(电信)
罗丹明B
异质结
压电
复合数
催化作用
纳米材料
化学工程
复合材料
纳米技术
光电子学
光催化
化学
电子工程
有机化学
工程类
作者
Chunran Zhao,Liye Cai,Kaiqi Wang,Bingxin Li,Shude Yuan,Zihao Zeng,Leihong Zhao,Ying Wu,Yiming He
标识
DOI:10.1016/j.envpol.2022.120982
摘要
This study designed and prepared a new piezoelectric catalytic nanomaterial, Bi2WO6/ZnSnO3, and applied it in piezocatalytic water purification. Results indicated that the composite had superior piezocatalytic efficiency and stability in rhodamine B (RhB) degradation under ultrasonic vibration. The Bi2WO6/ZnSnO3 sample with 10% Bi2WO6 had the optimum activity with a degradation rate of 2.15 h-1, which was 7.4 and 11.3 times that of ZnSnO3 and Bi2WO6, respectively. Various characterizations were conducted to study the morphology, structure, and piezoelectric properties of the Bi2WO6/ZnSnO3 composites and reveal the reasons for their improved piezocatalytic performance. Results showed that ZnSnO3 cubes were dispersed throughout the surface of Bi2WO6 nanosheets, which enhanced the specific surface area and facilitated the piezocatalytic reaction. Additionally, type-II heterojunction structures formed at the contact interface of Bi2WO6 and ZnSnO3, driving the migration of piezoelectric-induced electrons and holes. Accordingly, the separation efficiency of charge carriers improved, and the piezoelectric catalytic activity was significantly enhanced. This study may provide a potential composite catalyst and a promising idea for the design of highly efficient piezoelectric catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI