过硫酸盐
量子点
光催化
降级(电信)
单线态氧
光化学
材料科学
光降解
激进的
猝灭(荧光)
化学工程
化学
纳米技术
氧气
催化作用
荧光
有机化学
电子工程
工程类
物理
量子力学
作者
Yixin Cao,Xingzhong Yuan,Haoyun Chen,Hou Wang,Yi Chen,Junying Chen,Haoming Huang,Yi Mou,Zichen Shangguan,Xiang Li
标识
DOI:10.1016/j.cej.2022.140971
摘要
In recent years, concurrent photocatalysis-persulfate activation (CPPA) has emerged as a potential method for antibiotic removal. A highly active and stable catalyst is the prerequisites for the development of CPPA technology. Herein, Bi2S3 quantum dots (QDs) decorated MIL-53 (Fe) hybrids were synthesized for the first time by a simple chemical synthesis strategy and used for antibiotic degradation in the CPPA system. The energy band structure and optical properties show that BM has a narrower forbidden bandwidth, higher carrier separation, and transport efficiency compared to the original MIL-53(Fe). It also promotes the O2 transfer and makes the BM rich in oxygen vacancy (Ov), which becomes a bridge to connect photocatalysis and SR-AOPs. The BM-5/PS/vis system degraded over 97.4 % of the ciprofloxacin in 15 min and remained effective in the presence of common interfering substances or over a wide pH range. The quenching and trapping experiments indicate the dominance of superoxide radicals and singlet oxygen in the degradation process. The simultaneous activity of free radical and non-free routes could be responsible for the improved antibiotic degradation efficiency. This work provides a facile strategy in surface modification to improve the physicochemical properties of MIL-53(Fe) and demonstrates the catalytic role of BM in the CPPA system.
科研通智能强力驱动
Strongly Powered by AbleSci AI