Optimizing the quality control of multivariate processes under an improved Mahalanobis–Taguchi system

田口方法 马氏距离 支持向量机 特征选择 人工智能 模式识别(心理学) 计算机科学 多元统计 控制图 统计过程控制 工程类 数据挖掘 机器学习 过程(计算) 操作系统
作者
Yefang Sun,Ijaz Younis,Yueyi Zhang,Hui Zhou
出处
期刊:Quality Engineering [Informa]
卷期号:35 (3): 413-429 被引量:2
标识
DOI:10.1080/08982112.2022.2146511
摘要

Quality characteristics in manufacturing are correlated and do not follow a normal distribution. This study proposes a quality control method for multivariate manufacturing processes that are based on an improved Mahalanobis–Taguchi System (IMTS). The MTS has no data distribution assumptions and identifies anomalies through the Mahalanobis distance (MD). However, a covariance distance can consider the correlation between variables. Further, to address the shortcomings of the MTS in feature selection and threshold determination. A joint optimization model is proposed in this paper. Under this approach, the IMTS is employed to perform composite analyses on multiple quality characteristics and reduce dimensionality to identify abnormalities and the key quality characteristics that lead to anomalies. Further, various models are compared to construct the optimal non-parametric prediction models for each key quality characteristic. Finally, a conceptual model of process parameter optimization is proposed, which improves the Taguchi method to obtain the optimal combination of process parameters and their importance ranking, as the basis for process adjustment. By applying the proposed method, results show that the IMTS has an abnormality identification rate of 99.5%, which is higher than other methods such as MTS, support vector machine (SVM), back propagation neural network (BPNN), fast correlation-based filter solution SVM (FCBF-SVM) and sequential backward selection BPNN (SBS-BPNN). The dimensionality reduction rate is 0.5, which is higher than MTS, SVM, BPNN, and SBS-BPNN methods. The random forest (RF) algorithm is used for accurate predictions of all five key quality characteristics, the improved Taguchi method guided adjustments to manufacturing processes objectively, effectively, and economically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chase完成签到,获得积分10
刚刚
实验耗材完成签到 ,获得积分10
刚刚
1秒前
1秒前
JYP发布了新的文献求助10
2秒前
慕青应助qqq采纳,获得30
2秒前
sy发布了新的文献求助10
2秒前
科研通AI2S应助感动新烟采纳,获得10
2秒前
wxx336完成签到,获得积分10
2秒前
隐形曼青应助怡然的夏之采纳,获得10
2秒前
科研通AI6应助的的的维尔采纳,获得10
3秒前
3秒前
4秒前
脑洞疼应助水泥酱采纳,获得10
4秒前
4秒前
4秒前
Oops完成签到,获得积分10
4秒前
4秒前
维语发布了新的文献求助10
4秒前
wxy2011完成签到 ,获得积分10
4秒前
韩保晨发布了新的文献求助10
4秒前
悦耳的舞仙完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
奥格诺完成签到,获得积分10
5秒前
明明发布了新的文献求助10
6秒前
宋晓静发布了新的文献求助10
6秒前
善学以致用应助龙行天下采纳,获得10
6秒前
啊哈发布了新的文献求助10
6秒前
7秒前
Sy完成签到,获得积分10
7秒前
7秒前
7秒前
郑麻发布了新的文献求助10
8秒前
8秒前
9秒前
jack发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
顺利的中道完成签到,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590