Optimizing the quality control of multivariate processes under an improved Mahalanobis–Taguchi system

田口方法 马氏距离 支持向量机 特征选择 人工智能 模式识别(心理学) 计算机科学 多元统计 控制图 统计过程控制 工程类 数据挖掘 机器学习 过程(计算) 操作系统
作者
Yefang Sun,Ijaz Younis,Yueyi Zhang,Hui Zhou
出处
期刊:Quality Engineering [Taylor & Francis]
卷期号:35 (3): 413-429 被引量:2
标识
DOI:10.1080/08982112.2022.2146511
摘要

Quality characteristics in manufacturing are correlated and do not follow a normal distribution. This study proposes a quality control method for multivariate manufacturing processes that are based on an improved Mahalanobis–Taguchi System (IMTS). The MTS has no data distribution assumptions and identifies anomalies through the Mahalanobis distance (MD). However, a covariance distance can consider the correlation between variables. Further, to address the shortcomings of the MTS in feature selection and threshold determination. A joint optimization model is proposed in this paper. Under this approach, the IMTS is employed to perform composite analyses on multiple quality characteristics and reduce dimensionality to identify abnormalities and the key quality characteristics that lead to anomalies. Further, various models are compared to construct the optimal non-parametric prediction models for each key quality characteristic. Finally, a conceptual model of process parameter optimization is proposed, which improves the Taguchi method to obtain the optimal combination of process parameters and their importance ranking, as the basis for process adjustment. By applying the proposed method, results show that the IMTS has an abnormality identification rate of 99.5%, which is higher than other methods such as MTS, support vector machine (SVM), back propagation neural network (BPNN), fast correlation-based filter solution SVM (FCBF-SVM) and sequential backward selection BPNN (SBS-BPNN). The dimensionality reduction rate is 0.5, which is higher than MTS, SVM, BPNN, and SBS-BPNN methods. The random forest (RF) algorithm is used for accurate predictions of all five key quality characteristics, the improved Taguchi method guided adjustments to manufacturing processes objectively, effectively, and economically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿雷完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
ww完成签到,获得积分10
刚刚
1秒前
LLLiXXXXXiN发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
汉堡包应助gy采纳,获得10
2秒前
2秒前
wlm发布了新的文献求助10
2秒前
飞羽发布了新的文献求助10
2秒前
3秒前
油条狗发布了新的文献求助10
3秒前
红豆抹茶完成签到,获得积分10
4秒前
4秒前
二二发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助半夜炒茄子采纳,获得10
5秒前
眯眯眼的笑完成签到,获得积分10
5秒前
Neo完成签到,获得积分10
5秒前
寒冷的天亦完成签到,获得积分10
5秒前
小羊医生发布了新的文献求助10
6秒前
6秒前
冰冰子完成签到,获得积分10
7秒前
zx发布了新的文献求助10
7秒前
wulin发布了新的文献求助10
7秒前
明亮雨真发布了新的文献求助150
7秒前
7秒前
8秒前
爱听歌的糖豆完成签到,获得积分10
8秒前
CR7应助飞羽采纳,获得20
8秒前
hotcas完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI2S应助奶油泡fu采纳,获得10
10秒前
Camellia完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615406
求助须知:如何正确求助?哪些是违规求助? 4019207
关于积分的说明 12441329
捐赠科研通 3702203
什么是DOI,文献DOI怎么找? 2041500
邀请新用户注册赠送积分活动 1074170
科研通“疑难数据库(出版商)”最低求助积分说明 957802