Optimizing the quality control of multivariate processes under an improved Mahalanobis–Taguchi system

田口方法 马氏距离 支持向量机 特征选择 人工智能 模式识别(心理学) 计算机科学 多元统计 控制图 统计过程控制 工程类 数据挖掘 机器学习 过程(计算) 操作系统
作者
Yefang Sun,Ijaz Younis,Yueyi Zhang,Hui Zhou
出处
期刊:Quality Engineering [Informa]
卷期号:35 (3): 413-429 被引量:2
标识
DOI:10.1080/08982112.2022.2146511
摘要

Quality characteristics in manufacturing are correlated and do not follow a normal distribution. This study proposes a quality control method for multivariate manufacturing processes that are based on an improved Mahalanobis–Taguchi System (IMTS). The MTS has no data distribution assumptions and identifies anomalies through the Mahalanobis distance (MD). However, a covariance distance can consider the correlation between variables. Further, to address the shortcomings of the MTS in feature selection and threshold determination. A joint optimization model is proposed in this paper. Under this approach, the IMTS is employed to perform composite analyses on multiple quality characteristics and reduce dimensionality to identify abnormalities and the key quality characteristics that lead to anomalies. Further, various models are compared to construct the optimal non-parametric prediction models for each key quality characteristic. Finally, a conceptual model of process parameter optimization is proposed, which improves the Taguchi method to obtain the optimal combination of process parameters and their importance ranking, as the basis for process adjustment. By applying the proposed method, results show that the IMTS has an abnormality identification rate of 99.5%, which is higher than other methods such as MTS, support vector machine (SVM), back propagation neural network (BPNN), fast correlation-based filter solution SVM (FCBF-SVM) and sequential backward selection BPNN (SBS-BPNN). The dimensionality reduction rate is 0.5, which is higher than MTS, SVM, BPNN, and SBS-BPNN methods. The random forest (RF) algorithm is used for accurate predictions of all five key quality characteristics, the improved Taguchi method guided adjustments to manufacturing processes objectively, effectively, and economically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到,获得积分10
1秒前
LSH970829发布了新的文献求助10
1秒前
哈哈哈完成签到 ,获得积分10
2秒前
汤姆完成签到,获得积分10
2秒前
4秒前
4秒前
翠翠完成签到,获得积分10
5秒前
5秒前
LSH970829完成签到,获得积分10
6秒前
Lyg完成签到,获得积分20
7秒前
坚强的樱发布了新的文献求助10
7秒前
baodingning完成签到,获得积分10
8秒前
8秒前
公茂源发布了新的文献求助30
8秒前
热爱完成签到,获得积分10
9秒前
10秒前
叫滚滚发布了新的文献求助10
11秒前
星瑆心完成签到,获得积分10
11秒前
啦啦啦啦啦完成签到,获得积分10
12秒前
Lyg发布了新的文献求助10
12秒前
Dksido完成签到,获得积分10
13秒前
兰博基尼奥完成签到,获得积分10
13秒前
热情芷荷发布了新的文献求助10
15秒前
random完成签到,获得积分10
16秒前
16秒前
果果瑞宁完成签到,获得积分10
16秒前
17秒前
机智小虾米完成签到,获得积分20
17秒前
goldenfleece完成签到,获得积分10
18秒前
科研通AI2S应助学者采纳,获得10
18秒前
小杨完成签到,获得积分10
19秒前
sutharsons应助科研通管家采纳,获得30
20秒前
20秒前
Ava应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808