Optimizing the quality control of multivariate processes under an improved Mahalanobis–Taguchi system

田口方法 马氏距离 支持向量机 特征选择 人工智能 模式识别(心理学) 计算机科学 多元统计 控制图 统计过程控制 工程类 数据挖掘 机器学习 过程(计算) 操作系统
作者
Yefang Sun,Ijaz Younis,Yueyi Zhang,Hui Zhou
出处
期刊:Quality Engineering [Informa]
卷期号:35 (3): 413-429 被引量:2
标识
DOI:10.1080/08982112.2022.2146511
摘要

Quality characteristics in manufacturing are correlated and do not follow a normal distribution. This study proposes a quality control method for multivariate manufacturing processes that are based on an improved Mahalanobis–Taguchi System (IMTS). The MTS has no data distribution assumptions and identifies anomalies through the Mahalanobis distance (MD). However, a covariance distance can consider the correlation between variables. Further, to address the shortcomings of the MTS in feature selection and threshold determination. A joint optimization model is proposed in this paper. Under this approach, the IMTS is employed to perform composite analyses on multiple quality characteristics and reduce dimensionality to identify abnormalities and the key quality characteristics that lead to anomalies. Further, various models are compared to construct the optimal non-parametric prediction models for each key quality characteristic. Finally, a conceptual model of process parameter optimization is proposed, which improves the Taguchi method to obtain the optimal combination of process parameters and their importance ranking, as the basis for process adjustment. By applying the proposed method, results show that the IMTS has an abnormality identification rate of 99.5%, which is higher than other methods such as MTS, support vector machine (SVM), back propagation neural network (BPNN), fast correlation-based filter solution SVM (FCBF-SVM) and sequential backward selection BPNN (SBS-BPNN). The dimensionality reduction rate is 0.5, which is higher than MTS, SVM, BPNN, and SBS-BPNN methods. The random forest (RF) algorithm is used for accurate predictions of all five key quality characteristics, the improved Taguchi method guided adjustments to manufacturing processes objectively, effectively, and economically.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助budingman采纳,获得10
2秒前
ivv关注了科研通微信公众号
4秒前
strickland完成签到,获得积分10
4秒前
暴躁的水蜜桃完成签到 ,获得积分10
4秒前
5秒前
顾矜应助搞怪的哈密瓜采纳,获得10
6秒前
乖乖完成签到 ,获得积分10
8秒前
乖乖完成签到 ,获得积分10
8秒前
合适雅绿完成签到 ,获得积分10
8秒前
Andy_Zhou_01应助ixueyi采纳,获得10
10秒前
maox1aoxin应助启程牛牛采纳,获得30
10秒前
Z666666666完成签到 ,获得积分10
11秒前
12秒前
Orange应助xxxxxxxx采纳,获得10
13秒前
16秒前
budingman发布了新的文献求助10
17秒前
可爱的山竹完成签到,获得积分20
19秒前
19秒前
21秒前
22秒前
辉哥发布了新的文献求助10
23秒前
哈哈哈哈发布了新的文献求助10
24秒前
Johnny发布了新的文献求助10
26秒前
小马甲应助李李李采纳,获得10
26秒前
beiwei完成签到 ,获得积分10
27秒前
28秒前
马来自农村的马完成签到 ,获得积分10
30秒前
JamesPei应助辉哥采纳,获得10
32秒前
土土完成签到 ,获得积分10
33秒前
34秒前
lucky完成签到 ,获得积分10
34秒前
纯真保温杯完成签到 ,获得积分10
35秒前
orixero应助Johnny采纳,获得10
35秒前
成就念芹完成签到,获得积分10
36秒前
37秒前
单纯发布了新的文献求助10
38秒前
李李李发布了新的文献求助10
40秒前
huihui完成签到 ,获得积分10
42秒前
gg完成签到,获得积分10
42秒前
圆圆酱发布了新的文献求助30
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5856927
求助须知:如何正确求助?哪些是违规求助? 6325466
关于积分的说明 15635396
捐赠科研通 4971290
什么是DOI,文献DOI怎么找? 2681365
邀请新用户注册赠送积分活动 1625297
关于科研通互助平台的介绍 1582302