Optimizing the quality control of multivariate processes under an improved Mahalanobis–Taguchi system

田口方法 马氏距离 支持向量机 特征选择 人工智能 模式识别(心理学) 计算机科学 多元统计 控制图 统计过程控制 工程类 数据挖掘 机器学习 过程(计算) 操作系统
作者
Yefang Sun,Ijaz Younis,Yueyi Zhang,Hui Zhou
出处
期刊:Quality Engineering [Taylor & Francis]
卷期号:35 (3): 413-429 被引量:2
标识
DOI:10.1080/08982112.2022.2146511
摘要

Quality characteristics in manufacturing are correlated and do not follow a normal distribution. This study proposes a quality control method for multivariate manufacturing processes that are based on an improved Mahalanobis–Taguchi System (IMTS). The MTS has no data distribution assumptions and identifies anomalies through the Mahalanobis distance (MD). However, a covariance distance can consider the correlation between variables. Further, to address the shortcomings of the MTS in feature selection and threshold determination. A joint optimization model is proposed in this paper. Under this approach, the IMTS is employed to perform composite analyses on multiple quality characteristics and reduce dimensionality to identify abnormalities and the key quality characteristics that lead to anomalies. Further, various models are compared to construct the optimal non-parametric prediction models for each key quality characteristic. Finally, a conceptual model of process parameter optimization is proposed, which improves the Taguchi method to obtain the optimal combination of process parameters and their importance ranking, as the basis for process adjustment. By applying the proposed method, results show that the IMTS has an abnormality identification rate of 99.5%, which is higher than other methods such as MTS, support vector machine (SVM), back propagation neural network (BPNN), fast correlation-based filter solution SVM (FCBF-SVM) and sequential backward selection BPNN (SBS-BPNN). The dimensionality reduction rate is 0.5, which is higher than MTS, SVM, BPNN, and SBS-BPNN methods. The random forest (RF) algorithm is used for accurate predictions of all five key quality characteristics, the improved Taguchi method guided adjustments to manufacturing processes objectively, effectively, and economically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhang完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
3秒前
圆锥香蕉给ZEcholy的求助进行了留言
4秒前
jisujun发布了新的文献求助10
4秒前
李小宁发布了新的文献求助10
4秒前
7秒前
Stroeve发布了新的文献求助10
8秒前
欧阳月空完成签到,获得积分10
8秒前
8秒前
星辰大海应助李小宁采纳,获得10
9秒前
段一帆发布了新的文献求助10
9秒前
冷艳的姿发布了新的文献求助10
9秒前
10秒前
FIN应助小小采纳,获得30
10秒前
领导范儿应助su采纳,获得10
11秒前
Candy发布了新的文献求助10
11秒前
Rondab应助xiaosu采纳,获得10
12秒前
CodeCraft应助LJJ采纳,获得10
13秒前
13秒前
SYLH应助科研通管家采纳,获得20
14秒前
所所应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
张金蝶完成签到,获得积分10
14秒前
搜集达人应助科研通管家采纳,获得10
15秒前
CAOHOU应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
CAOHOU应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
量子星尘发布了新的文献求助30
15秒前
SYLH应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
15秒前
CAOHOU应助科研通管家采纳,获得10
15秒前
Lyuhng+1完成签到 ,获得积分10
16秒前
大个应助十九岁的时差采纳,获得10
17秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173