A Highly Robust Reversible Watermarking Scheme Using Embedding Optimization and Rounded Error Compensation

数字水印 水印 稳健性(进化) 嵌入 计算机科学 算法 规范化(社会学) 人工智能 图像(数学) 人类学 生物化学 基因 社会学 化学
作者
Yichao Tang,Shuai Wang,Chuntao Wang,Shijun Xiang,Yiu‐ming Cheung
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (4): 1593-1609 被引量:8
标识
DOI:10.1109/tcsvt.2022.3216849
摘要

The robust reversible watermarking (RRW) requires high robustness and capacity on the condition of reversibility and imperceptibility, which still remains a big challenge nowadays. In this paper, we propose a two-stage RRW scheme that improves robustness and capacity through embedding optimization and rounded error compensation. The first stage inserts a robust watermark into the selected Pseudo-Zernike moments (PZMs) by using an adaptive normalization method and an optimized embedding strategy. Specifically, the adaptive normalization method achieves both an invariance to pixel amplitude variation and a balance between robustness and imperceptibility, and the optimized embedding strategy reduces embedding distortions remarkably. The watermarked PZMs are inversely transformed to generate the robustly watermarked image, in which rounded errors caused in the inverse transformation is compensated elaborately and thus a larger capacity can be obtained at the same embedding distortion. The second stage embeds a reversible watermark consisting of errors between the robust watermark embedded image and the original one, aiming at achieving the reversibility in case of no attacks. Extensive experimental simulations show that the proposed scheme provides strong robustness against common signal processing, including AWGN, salt-and-pepper noise, JPEG, JPEG2000, median filtering, mean filtering, geometrical transformations involving rotation and scaling, and a compressive sensing attack exemplified by two-dimensional compressive sensing, which outperforms the state-of-the-art schemes. Our code is available at https://github.com/yichao-tang/PZMs-RRW .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌鱼发布了新的文献求助20
刚刚
毒翼完成签到,获得积分10
1秒前
解语花发布了新的文献求助30
2秒前
2秒前
ZZZ发布了新的文献求助10
2秒前
Betty完成签到,获得积分10
3秒前
刘迪发布了新的文献求助10
3秒前
科研小狗完成签到,获得积分10
4秒前
嗄巧发布了新的文献求助10
5秒前
6秒前
无私的芹应助蕊蕊采纳,获得10
6秒前
wanci应助是真的宇航员啊采纳,获得10
6秒前
wf0806发布了新的文献求助10
6秒前
乐观黑米发布了新的文献求助10
6秒前
ding应助自由的冰蓝采纳,获得10
7秒前
小胳膊细腿完成签到,获得积分10
7秒前
亮亮完成签到,获得积分10
8秒前
麦客完成签到,获得积分10
8秒前
筑城院完成签到,获得积分10
10秒前
11111112222完成签到,获得积分10
10秒前
10秒前
alilu发布了新的文献求助10
11秒前
清明发布了新的文献求助10
11秒前
12秒前
乐观黑米完成签到,获得积分20
12秒前
丘比特应助谷大喵唔采纳,获得30
12秒前
上官若男应助QAQ采纳,获得10
14秒前
量子星尘发布了新的文献求助30
15秒前
二胡完成签到,获得积分10
15秒前
15秒前
楼轶发布了新的文献求助10
15秒前
大力的老虎完成签到,获得积分10
15秒前
所所应助奔波儿灞采纳,获得10
16秒前
快乐科研完成签到,获得积分10
16秒前
皮蛋_WH发布了新的文献求助10
16秒前
流离失所完成签到 ,获得积分10
17秒前
开心的寄灵完成签到 ,获得积分10
18秒前
酷波er应助wf0806采纳,获得10
18秒前
李爱国应助自由的冰蓝采纳,获得10
20秒前
雪碧要加冰完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707