亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic detection, classification and localization of defects in large photovoltaic plants using unmanned aerial vehicles (UAV) based infrared (IR) and RGB imaging

人工智能 计算机视觉 光伏系统 兰萨克 图像拼接 RGB颜色模型 特征(语言学) 尺度不变特征变换 航空影像 计算机科学 缩放 特征提取 工程类 图像(数学) 石油工程 镜头(地质) 语言学 电气工程 哲学
作者
Chung‐Feng Jeffrey Kuo,Sung-Hua Chen,Chao-Yang Huang
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:276: 116495-116495 被引量:60
标识
DOI:10.1016/j.enconman.2022.116495
摘要

This study aims to build a photovoltaic (PV) plant maintenance and operation system, using an unmanned aerial vehicle (UAV) carrying a thermal imager to take images. In the proposed system, the infrared (IR) image was used for detecting PV module thermal defects, and the RGB image was used for detecting module surface defects. The two images were employed to cross validate the causes for module defects. In Part I, the PV plant information pattern was created, and the Taiwan PV plant (1,482 PV modules, 410 kW) was taken as an example. The PV system image feature points were detected by using the Scale Invariant Feature Transform (SIFT), in order to solve the feature variation problems, such as image luminance, rotation, and zoom in/out. The same feature points of multiple local power plant images were matched. Afterwards, the optimal number of feature points was calculated by homography transformation and random sample consensus (RANSAC) to form the PV plant panorama by image stitching. The PV plant panorama background noise was removed by image hue. The module segmentation of PV systems was performed by using image luminance, and the PV module was geometrically reconstructed by using morphology. The PV module edge contour was extracted by the Laplace operator to obtain the perimeter, area, and centroid features. The quantity and positions of PV modules were recognized and calculated to form the PV plant information pattern. In Part II, the PV module defect recognition and classification system was built. The defects in seven PV plants in Taiwan were collected, and the image features were enhanced using a convolutional neural network (CNN). Besides using the convolution layer to capture the image features, Max Pooling and local response normalization were used to enhance the image features. Color space transform was used to intensify the color features, increase the accuracy of the classification modules, and recognize and position the PV module defects. The IR image hot spot recognition accuracy was 100%. The classification accuracy of eight modules, including one normal module and seven defect modules, is 97.52%. The classification accuracy of six modules, including the appearances of one normal module and five defects in RGB images, is 99.17%. The classification accuracy of 14 defects in IR thermal images and RGB images is 97.52%. The causes of defects were cross validated by IR thermal image and RGB image. This study applied the K-fold cross validation to select the optimal model, and the recognition time of one image was shorter than 0.3 s, which is lower than the camera time constant. The results show that the system is applicable to real-time detections. In Part III, the PV plant defect information pattern was created. The PV module with defects was labeled during detection, and the defects in the power plant PV module and the positions thereof were obtained, which would be favorable for PV plant maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩学冲完成签到 ,获得积分10
4秒前
白色蒲公英完成签到,获得积分10
5秒前
sujiaoziemo完成签到,获得积分10
11秒前
BowieHuang应助Freshman采纳,获得10
12秒前
一行完成签到,获得积分10
26秒前
iman完成签到,获得积分10
35秒前
37秒前
37秒前
42秒前
缥缈雯发布了新的文献求助10
44秒前
敬业乐群完成签到,获得积分10
53秒前
暴躁的鱼完成签到 ,获得积分10
1分钟前
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ff发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
思源应助kaia采纳,获得10
3分钟前
3分钟前
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
积极的觅松完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
kaia完成签到,获得积分10
4分钟前
rodrisk完成签到 ,获得积分10
4分钟前
kaia发布了新的文献求助10
4分钟前
4分钟前
Lucas应助小巧含之采纳,获得10
4分钟前
少川完成签到 ,获得积分10
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549206
求助须知:如何正确求助?哪些是违规求助? 4634546
关于积分的说明 14634767
捐赠科研通 4575948
什么是DOI,文献DOI怎么找? 2509399
邀请新用户注册赠送积分活动 1485299
关于科研通互助平台的介绍 1456488