X射线光电子能谱
硫族元素
密度泛函理论
电子结构
钼
结合能
价(化学)
电离能
电子能带结构
谱线
光电发射光谱学
原子轨道
核心电子
材料科学
光谱学
碲化物
化学
原子物理学
结晶学
电离
电子
计算化学
凝聚态物理
物理
核磁共振
离子
量子力学
有机化学
冶金
天文
作者
Leanne A. H. Jones,Zongda Xing,Jack E. N. Swallow,Huw Shiel,Thomas J. Featherstone,Matthew J. Smiles,Nicole Fleck,P. Thakur,Tien‐Lin Lee,Laurence J. Hardwick,David O. Scanlon,Anna Regoutz,T. D. Veal,V.R. Dhanak
标识
DOI:10.1021/acs.jpcc.2c05100
摘要
A comprehensive study of bulk molybdenum dichalcogenides is presented with the use of soft and hard X-ray photoelectron (SXPS and HAXPES) spectroscopy combined with hybrid density functional theory (DFT). The main core levels of MoS2, MoSe2, and MoTe2 are explored. Laboratory-based X-ray photoelectron spectroscopy (XPS) is used to determine the ionization potential (IP) values of the MoX2 series as 5.86, 5.40, and 5.00 eV for MoSe2, MoSe2, and MoTe2, respectively, enabling the band alignment of the series to be established. Finally, the valence band measurements are compared with the calculated density of states which shows the role of p-d hybridization in these materials. Down the group, an increase in the p-d hybridization from the sulfide to the telluride is observed, explained by the configuration energy of the chalcogen p orbitals becoming closer to that of the valence Mo 4d orbitals. This pushes the valence band maximum closer to the vacuum level, explaining the decreasing IP down the series. High-resolution SXPS and HAXPES core-level spectra address the shortcomings of the XPS analysis in the literature. Furthermore, the experimentally determined band alignment can be used to inform future device work.
科研通智能强力驱动
Strongly Powered by AbleSci AI