Production-Ready Face Re-Aging for Visual Effects

计算机科学 工作流程 人工智能 任务(项目管理) 杠杆(统计) 计算机视觉 数据库 经济 管理
作者
Gaspard Zoss,Prashanth Chandran,Eftychios Sifakis,Markus Gross,Paulo Gotardo,Derek Bradley
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:41 (6): 1-12
标识
DOI:10.1145/3550454.3555520
摘要

Photorealistic digital re-aging of faces in video is becoming increasingly common in entertainment and advertising. But the predominant 2D painting workflow often requires frame-by-frame manual work that can take days to accomplish, even by skilled artists. Although research on facial image re-aging has attempted to automate and solve this problem, current techniques are of little practical use as they typically suffer from facial identity loss, poor resolution, and unstable results across subsequent video frames. In this paper, we present the first practical, fully-automatic and production-ready method for re-aging faces in video images. Our first key insight is in addressing the problem of collecting longitudinal training data for learning to re-age faces over extended periods of time, a task that is nearly impossible to accomplish for a large number of real people. We show how such a longitudinal dataset can be constructed by leveraging the current state-of-the-art in facial re-aging that, although failing on real images, does provide photoreal re-aging results on synthetic faces. Our second key insight is then to leverage such synthetic data and formulate facial re-aging as a practical image-to-image translation task that can be performed by training a well-understood U-Net architecture, without the need for more complex network designs. We demonstrate how the simple U-Net, surprisingly, allows us to advance the state of the art for re-aging real faces on video, with unprecedented temporal stability and preservation of facial identity across variable expressions, viewpoints, and lighting conditions. Finally, our new face re-aging network (FRAN) incorporates simple and intuitive mechanisms that provides artists with localized control and creative freedom to direct and fine-tune the re-aging effect, a feature that is largely important in real production pipelines and often overlooked in related research work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋十一完成签到,获得积分10
1秒前
慕冰蝶发布了新的文献求助10
1秒前
马铃薯完成签到,获得积分10
1秒前
张张张xxx完成签到,获得积分10
1秒前
homeworkk完成签到,获得积分10
2秒前
3秒前
Henry完成签到,获得积分10
4秒前
甜心妮完成签到,获得积分10
4秒前
111完成签到,获得积分10
5秒前
乃惜完成签到,获得积分10
6秒前
小羊完成签到,获得积分10
6秒前
稳重岩完成签到 ,获得积分10
8秒前
卓一曲完成签到,获得积分10
8秒前
xixi完成签到 ,获得积分10
9秒前
阳光的山雁完成签到,获得积分10
9秒前
qingxinhuo完成签到 ,获得积分10
9秒前
努力的宝汁完成签到 ,获得积分10
10秒前
独特乘云完成签到,获得积分10
10秒前
XIEMIN发布了新的文献求助10
10秒前
所所应助小羊采纳,获得10
11秒前
苦命研究完成签到,获得积分10
12秒前
LWW完成签到,获得积分10
12秒前
嘻嘻哈哈完成签到 ,获得积分10
13秒前
文几完成签到,获得积分10
13秒前
satchzhao完成签到,获得积分10
14秒前
seven完成签到,获得积分10
15秒前
TORCH完成签到 ,获得积分10
16秒前
二二完成签到,获得积分10
16秒前
Youngen完成签到,获得积分10
16秒前
18秒前
词汇过万完成签到,获得积分10
18秒前
AteeqBaloch完成签到,获得积分10
19秒前
kxdxng完成签到 ,获得积分10
19秒前
苦命研究发布了新的文献求助10
20秒前
炒饭完成签到,获得积分20
21秒前
22秒前
炒饭发布了新的文献求助10
23秒前
Singularity应助文几采纳,获得20
23秒前
tetrakis完成签到,获得积分10
23秒前
南枝完成签到,获得积分10
24秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807511
捐赠科研通 2450069
什么是DOI,文献DOI怎么找? 1303637
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350