TSF-transformer: a time series forecasting model for exhaust gas emission using transformer

卡车 变压器 计算机科学 废气 时间序列 汽车工程 实时计算 环境科学 机器学习 电压 工程类 电气工程 废物管理
作者
Zhenyu Li,Xikun Zhang,Zhenbiao Dong
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (13): 17211-17225 被引量:10
标识
DOI:10.1007/s10489-022-04326-1
摘要

Monitoring and prediction of exhaust gas emissions for heavy trucks is a promising way to solve environmental problems. However, the emission data acquisition is time delayed and the pattern of emission is usually irregular, which makes it very difficult to accurately predict the emission state. To deal with these problems, in this paper, we interpret emission prediction as a time series prediction problem and explore a deep learning model, a time-series forecasting Transformer (TSF-Transformer) for exhaust gas emission prediction. The exhaust emission of the heavy truck is not directly predicted, but indirectly predicted by predicting the temperature and pressure changes of the exhaust pipe under the working state of the truck. The basis of our research is based on real-time data feeds from temperature and pressure sensors installed on the exhaust pipe of approximately 12,000 heavy trucks. Therefore, the task of time series forecasting consists of two key stages: monitoring and prediction. The former utilizes the server to receive the data sent by the sensors in real-time, and the latter uses these data as samples for network training and testing. The training of the network throughout the prediction process is done in an unsupervised manner. Also, to visualize the forecast results, we weight the forecast data with the truck trajectories and present them as heatmaps. To the best of our knowledge, this is the first case of using the Transformer as the core component of the prediction model to complete the task of exhaust emissions prediction from heavy trucks. Experiments show that the prediction model outperforms other state-of-the-art methods in prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wangping发布了新的文献求助10
1秒前
赵志浩完成签到,获得积分10
1秒前
汤柏钧发布了新的文献求助10
1秒前
冷静书白发布了新的文献求助10
1秒前
1秒前
xilin发布了新的文献求助10
1秒前
1秒前
Oasis完成签到,获得积分10
2秒前
失落的叶完成签到 ,获得积分10
2秒前
2秒前
2秒前
一一一完成签到 ,获得积分10
2秒前
2秒前
DreamerOj发布了新的文献求助30
2秒前
2秒前
2秒前
WK-kin给WK-kin的求助进行了留言
3秒前
苜蓿发布了新的文献求助10
3秒前
3秒前
bkagyin应助快乐小天使采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
齐百七完成签到,获得积分10
4秒前
HQQ发布了新的文献求助10
5秒前
6秒前
哲哲发布了新的文献求助10
6秒前
隐形期待发布了新的文献求助10
6秒前
章半仙发布了新的文献求助10
6秒前
7秒前
浮游应助慢羊羊采纳,获得10
7秒前
科研通AI6应助小小鱼采纳,获得10
7秒前
Elanie.zh发布了新的文献求助10
7秒前
大胆金针菇完成签到,获得积分10
7秒前
可爱的函函应助peace采纳,获得10
7秒前
黄伟凯完成签到,获得积分20
7秒前
denty发布了新的文献求助10
8秒前
缥缈哈密瓜完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803