TSF-transformer: a time series forecasting model for exhaust gas emission using transformer

卡车 变压器 计算机科学 废气 时间序列 汽车工程 实时计算 环境科学 机器学习 电压 工程类 电气工程 废物管理
作者
Zhenyu Li,Xikun Zhang,Zhenbiao Dong
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (13): 17211-17225 被引量:10
标识
DOI:10.1007/s10489-022-04326-1
摘要

Monitoring and prediction of exhaust gas emissions for heavy trucks is a promising way to solve environmental problems. However, the emission data acquisition is time delayed and the pattern of emission is usually irregular, which makes it very difficult to accurately predict the emission state. To deal with these problems, in this paper, we interpret emission prediction as a time series prediction problem and explore a deep learning model, a time-series forecasting Transformer (TSF-Transformer) for exhaust gas emission prediction. The exhaust emission of the heavy truck is not directly predicted, but indirectly predicted by predicting the temperature and pressure changes of the exhaust pipe under the working state of the truck. The basis of our research is based on real-time data feeds from temperature and pressure sensors installed on the exhaust pipe of approximately 12,000 heavy trucks. Therefore, the task of time series forecasting consists of two key stages: monitoring and prediction. The former utilizes the server to receive the data sent by the sensors in real-time, and the latter uses these data as samples for network training and testing. The training of the network throughout the prediction process is done in an unsupervised manner. Also, to visualize the forecast results, we weight the forecast data with the truck trajectories and present them as heatmaps. To the best of our knowledge, this is the first case of using the Transformer as the core component of the prediction model to complete the task of exhaust emissions prediction from heavy trucks. Experiments show that the prediction model outperforms other state-of-the-art methods in prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助房靳采纳,获得10
刚刚
NexusExplorer应助蛋堡采纳,获得10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
CodeCraft应助KYRIELIU采纳,获得10
1秒前
tree完成签到,获得积分10
1秒前
我的眼睛里有光完成签到 ,获得积分10
1秒前
2秒前
陈牛逼发布了新的文献求助10
2秒前
慕青应助义气的咖啡豆采纳,获得10
2秒前
小蘑菇应助无情的南琴采纳,获得10
3秒前
科研小趴菜完成签到,获得积分10
4秒前
4秒前
Xzmmmm发布了新的文献求助50
4秒前
单薄凌蝶发布了新的文献求助10
5秒前
天天快乐应助张艺馨采纳,获得10
5秒前
科研通AI6应助何1采纳,获得10
5秒前
fei完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
Jack完成签到,获得积分10
6秒前
跳跃的雪珊完成签到 ,获得积分10
7秒前
科研通AI6应助凉小远采纳,获得10
7秒前
奋斗诗云完成签到 ,获得积分10
7秒前
Jasper应助小杭76采纳,获得10
7秒前
7秒前
John完成签到,获得积分10
8秒前
Zirush发布了新的文献求助10
8秒前
刘子田完成签到,获得积分10
9秒前
Jacky完成签到,获得积分10
9秒前
9秒前
starr完成签到 ,获得积分10
9秒前
mzm应助ligy采纳,获得50
9秒前
机械霜完成签到,获得积分10
10秒前
北挽发布了新的文献求助10
10秒前
小茗发布了新的文献求助10
10秒前
单薄凌蝶完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066