TSF-transformer: a time series forecasting model for exhaust gas emission using transformer

卡车 变压器 计算机科学 废气 时间序列 汽车工程 实时计算 环境科学 机器学习 电压 工程类 电气工程 废物管理
作者
Zhenyu Li,Xikun Zhang,Zhenbiao Dong
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (13): 17211-17225 被引量:10
标识
DOI:10.1007/s10489-022-04326-1
摘要

Monitoring and prediction of exhaust gas emissions for heavy trucks is a promising way to solve environmental problems. However, the emission data acquisition is time delayed and the pattern of emission is usually irregular, which makes it very difficult to accurately predict the emission state. To deal with these problems, in this paper, we interpret emission prediction as a time series prediction problem and explore a deep learning model, a time-series forecasting Transformer (TSF-Transformer) for exhaust gas emission prediction. The exhaust emission of the heavy truck is not directly predicted, but indirectly predicted by predicting the temperature and pressure changes of the exhaust pipe under the working state of the truck. The basis of our research is based on real-time data feeds from temperature and pressure sensors installed on the exhaust pipe of approximately 12,000 heavy trucks. Therefore, the task of time series forecasting consists of two key stages: monitoring and prediction. The former utilizes the server to receive the data sent by the sensors in real-time, and the latter uses these data as samples for network training and testing. The training of the network throughout the prediction process is done in an unsupervised manner. Also, to visualize the forecast results, we weight the forecast data with the truck trajectories and present them as heatmaps. To the best of our knowledge, this is the first case of using the Transformer as the core component of the prediction model to complete the task of exhaust emissions prediction from heavy trucks. Experiments show that the prediction model outperforms other state-of-the-art methods in prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SMZ发布了新的文献求助10
1秒前
1秒前
传奇3应助XiAnZH采纳,获得10
2秒前
852应助小李采纳,获得10
2秒前
zzk发布了新的文献求助10
4秒前
yunnn关注了科研通微信公众号
5秒前
动听初珍完成签到,获得积分20
5秒前
8秒前
科研通AI6应助Anima采纳,获得10
8秒前
硕硕完成签到,获得积分10
9秒前
misschiu完成签到,获得积分10
10秒前
Ah发布了新的文献求助10
10秒前
英俊的铭应助小暴采纳,获得10
11秒前
可鹿丽完成签到 ,获得积分10
11秒前
12秒前
12秒前
Hour完成签到,获得积分20
12秒前
litianchi完成签到,获得积分10
13秒前
HOAN应助Katyusha采纳,获得30
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
小李发布了新的文献求助10
15秒前
zzk完成签到,获得积分10
16秒前
16秒前
必发Nature完成签到,获得积分10
16秒前
务实觅松完成签到 ,获得积分10
17秒前
17秒前
无极微光应助luo采纳,获得20
18秒前
希望天下0贩的0应助碎碎采纳,获得10
18秒前
yoyo完成签到 ,获得积分10
19秒前
科研通AI2S应助wxd采纳,获得10
19秒前
19秒前
Liliz发布了新的文献求助10
19秒前
KYT发布了新的文献求助10
19秒前
20秒前
22秒前
小李完成签到,获得积分10
22秒前
李爱国应助Whizzin采纳,获得20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756