TSF-transformer: a time series forecasting model for exhaust gas emission using transformer

卡车 变压器 计算机科学 废气 时间序列 汽车工程 实时计算 环境科学 机器学习 电压 工程类 电气工程 废物管理
作者
Zhenyu Li,Xikun Zhang,Zhenbiao Dong
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (13): 17211-17225 被引量:10
标识
DOI:10.1007/s10489-022-04326-1
摘要

Monitoring and prediction of exhaust gas emissions for heavy trucks is a promising way to solve environmental problems. However, the emission data acquisition is time delayed and the pattern of emission is usually irregular, which makes it very difficult to accurately predict the emission state. To deal with these problems, in this paper, we interpret emission prediction as a time series prediction problem and explore a deep learning model, a time-series forecasting Transformer (TSF-Transformer) for exhaust gas emission prediction. The exhaust emission of the heavy truck is not directly predicted, but indirectly predicted by predicting the temperature and pressure changes of the exhaust pipe under the working state of the truck. The basis of our research is based on real-time data feeds from temperature and pressure sensors installed on the exhaust pipe of approximately 12,000 heavy trucks. Therefore, the task of time series forecasting consists of two key stages: monitoring and prediction. The former utilizes the server to receive the data sent by the sensors in real-time, and the latter uses these data as samples for network training and testing. The training of the network throughout the prediction process is done in an unsupervised manner. Also, to visualize the forecast results, we weight the forecast data with the truck trajectories and present them as heatmaps. To the best of our knowledge, this is the first case of using the Transformer as the core component of the prediction model to complete the task of exhaust emissions prediction from heavy trucks. Experiments show that the prediction model outperforms other state-of-the-art methods in prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小西发布了新的文献求助30
1秒前
行不通完成签到,获得积分10
1秒前
小赟发布了新的文献求助20
2秒前
Ava应助爱学习采纳,获得10
2秒前
2秒前
wary发布了新的文献求助10
2秒前
橘子完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
了了发布了新的文献求助10
5秒前
5秒前
ZQY完成签到 ,获得积分10
5秒前
斯文败类应助正直亦旋采纳,获得10
7秒前
科研通AI5应助jijahui采纳,获得80
8秒前
Jenny应助背后的诺言采纳,获得10
8秒前
木木完成签到,获得积分10
8秒前
赤邪发布了新的文献求助10
8秒前
8秒前
keen完成签到 ,获得积分10
8秒前
et完成签到,获得积分10
9秒前
桂魄完成签到,获得积分10
9秒前
9秒前
10秒前
wang发布了新的文献求助200
11秒前
11秒前
11秒前
英姑应助snowdrift采纳,获得10
11秒前
11秒前
11秒前
jy完成签到 ,获得积分10
11秒前
NexusExplorer应助立马毕业采纳,获得10
12秒前
在水一方应助123采纳,获得10
13秒前
科目三应助白华苍松采纳,获得10
14秒前
通~发布了新的文献求助10
14秒前
CipherSage应助千幻采纳,获得10
14秒前
14秒前
dddddd完成签到,获得积分10
14秒前
桂魄发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762