亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TSF-transformer: a time series forecasting model for exhaust gas emission using transformer

卡车 变压器 计算机科学 废气 时间序列 汽车工程 实时计算 环境科学 机器学习 电压 工程类 电气工程 废物管理
作者
Zhenyu Li,Xikun Zhang,Zhenbiao Dong
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (13): 17211-17225 被引量:10
标识
DOI:10.1007/s10489-022-04326-1
摘要

Monitoring and prediction of exhaust gas emissions for heavy trucks is a promising way to solve environmental problems. However, the emission data acquisition is time delayed and the pattern of emission is usually irregular, which makes it very difficult to accurately predict the emission state. To deal with these problems, in this paper, we interpret emission prediction as a time series prediction problem and explore a deep learning model, a time-series forecasting Transformer (TSF-Transformer) for exhaust gas emission prediction. The exhaust emission of the heavy truck is not directly predicted, but indirectly predicted by predicting the temperature and pressure changes of the exhaust pipe under the working state of the truck. The basis of our research is based on real-time data feeds from temperature and pressure sensors installed on the exhaust pipe of approximately 12,000 heavy trucks. Therefore, the task of time series forecasting consists of two key stages: monitoring and prediction. The former utilizes the server to receive the data sent by the sensors in real-time, and the latter uses these data as samples for network training and testing. The training of the network throughout the prediction process is done in an unsupervised manner. Also, to visualize the forecast results, we weight the forecast data with the truck trajectories and present them as heatmaps. To the best of our knowledge, this is the first case of using the Transformer as the core component of the prediction model to complete the task of exhaust emissions prediction from heavy trucks. Experiments show that the prediction model outperforms other state-of-the-art methods in prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mannone完成签到,获得积分10
4秒前
Xinying完成签到,获得积分10
17秒前
34秒前
吴门烟水完成签到,获得积分0
38秒前
爱笑的眼睛完成签到,获得积分10
56秒前
zsmj23完成签到 ,获得积分0
1分钟前
小飞鸡完成签到,获得积分10
1分钟前
CodeCraft应助liudy采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
liudy完成签到,获得积分10
1分钟前
liudy发布了新的文献求助10
1分钟前
香蕉觅云应助LukeLion采纳,获得10
2分钟前
2分钟前
2分钟前
Jimmy完成签到 ,获得积分10
2分钟前
LukeLion发布了新的文献求助10
2分钟前
anyilin发布了新的文献求助10
2分钟前
anyilin完成签到,获得积分10
2分钟前
3分钟前
3分钟前
852应助科研通管家采纳,获得10
3分钟前
4分钟前
大模型应助爱听歌笑寒采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
amengptsd完成签到,获得积分10
5分钟前
优秀的dd完成签到 ,获得积分10
5分钟前
乐乐应助勇敢的蝙蝠侠采纳,获得10
6分钟前
CodeCraft应助勇敢的蝙蝠侠采纳,获得10
6分钟前
完美世界应助西瓜采纳,获得10
6分钟前
6分钟前
西瓜发布了新的文献求助10
6分钟前
6分钟前
6分钟前
极地东风发布了新的文献求助10
6分钟前
西瓜完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611550
求助须知:如何正确求助?哪些是违规求助? 4017019
关于积分的说明 12435975
捐赠科研通 3698914
什么是DOI,文献DOI怎么找? 2039848
邀请新用户注册赠送积分活动 1072626
科研通“疑难数据库(出版商)”最低求助积分说明 956329