TSF-transformer: a time series forecasting model for exhaust gas emission using transformer

卡车 变压器 计算机科学 废气 时间序列 汽车工程 实时计算 环境科学 机器学习 电压 工程类 电气工程 废物管理
作者
Zhenyu Li,Xikun Zhang,Zhenbiao Dong
出处
期刊:Applied Intelligence [Springer Science+Business Media]
卷期号:53 (13): 17211-17225 被引量:10
标识
DOI:10.1007/s10489-022-04326-1
摘要

Monitoring and prediction of exhaust gas emissions for heavy trucks is a promising way to solve environmental problems. However, the emission data acquisition is time delayed and the pattern of emission is usually irregular, which makes it very difficult to accurately predict the emission state. To deal with these problems, in this paper, we interpret emission prediction as a time series prediction problem and explore a deep learning model, a time-series forecasting Transformer (TSF-Transformer) for exhaust gas emission prediction. The exhaust emission of the heavy truck is not directly predicted, but indirectly predicted by predicting the temperature and pressure changes of the exhaust pipe under the working state of the truck. The basis of our research is based on real-time data feeds from temperature and pressure sensors installed on the exhaust pipe of approximately 12,000 heavy trucks. Therefore, the task of time series forecasting consists of two key stages: monitoring and prediction. The former utilizes the server to receive the data sent by the sensors in real-time, and the latter uses these data as samples for network training and testing. The training of the network throughout the prediction process is done in an unsupervised manner. Also, to visualize the forecast results, we weight the forecast data with the truck trajectories and present them as heatmaps. To the best of our knowledge, this is the first case of using the Transformer as the core component of the prediction model to complete the task of exhaust emissions prediction from heavy trucks. Experiments show that the prediction model outperforms other state-of-the-art methods in prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dong应助hope采纳,获得10
刚刚
芋泥完成签到,获得积分10
1秒前
琪宝非宝发布了新的文献求助10
2秒前
2秒前
SciGPT应助我才是孙悟空采纳,获得10
2秒前
Owllight发布了新的文献求助10
3秒前
小二郎应助生椰拿铁采纳,获得10
5秒前
tdd完成签到,获得积分10
5秒前
6秒前
JHL发布了新的文献求助10
6秒前
6秒前
我是老大应助陈陈陈采纳,获得10
7秒前
杏子发布了新的文献求助10
8秒前
sjx发布了新的文献求助10
8秒前
吕韦霖完成签到,获得积分10
8秒前
材料若饥发布了新的文献求助200
8秒前
聪慧芷巧发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
小鱼头完成签到,获得积分10
11秒前
12秒前
Mody发布了新的文献求助10
13秒前
Owen应助xiongzi采纳,获得10
13秒前
七街完成签到 ,获得积分10
13秒前
慕青应助misalia采纳,获得10
13秒前
15秒前
hoijuon应助Owllight采纳,获得10
15秒前
夏青荷发布了新的文献求助10
16秒前
可爱的函函应助JHL采纳,获得10
17秒前
zhouyan发布了新的文献求助10
17秒前
淡定的如风完成签到,获得积分10
18秒前
荆华完成签到,获得积分10
18秒前
老狗完成签到 ,获得积分10
19秒前
20秒前
smart应助bpg28采纳,获得10
20秒前
杏子完成签到,获得积分10
20秒前
HeWA发布了新的文献求助30
21秒前
22秒前
zzz发布了新的文献求助10
23秒前
zhaoyaoshi发布了新的文献求助10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150