TSF-transformer: a time series forecasting model for exhaust gas emission using transformer

卡车 变压器 计算机科学 废气 时间序列 汽车工程 实时计算 环境科学 机器学习 电压 工程类 电气工程 废物管理
作者
Zhenyu Li,Xikun Zhang,Zhenbiao Dong
出处
期刊:Applied Intelligence [Springer Nature]
卷期号:53 (13): 17211-17225 被引量:10
标识
DOI:10.1007/s10489-022-04326-1
摘要

Monitoring and prediction of exhaust gas emissions for heavy trucks is a promising way to solve environmental problems. However, the emission data acquisition is time delayed and the pattern of emission is usually irregular, which makes it very difficult to accurately predict the emission state. To deal with these problems, in this paper, we interpret emission prediction as a time series prediction problem and explore a deep learning model, a time-series forecasting Transformer (TSF-Transformer) for exhaust gas emission prediction. The exhaust emission of the heavy truck is not directly predicted, but indirectly predicted by predicting the temperature and pressure changes of the exhaust pipe under the working state of the truck. The basis of our research is based on real-time data feeds from temperature and pressure sensors installed on the exhaust pipe of approximately 12,000 heavy trucks. Therefore, the task of time series forecasting consists of two key stages: monitoring and prediction. The former utilizes the server to receive the data sent by the sensors in real-time, and the latter uses these data as samples for network training and testing. The training of the network throughout the prediction process is done in an unsupervised manner. Also, to visualize the forecast results, we weight the forecast data with the truck trajectories and present them as heatmaps. To the best of our knowledge, this is the first case of using the Transformer as the core component of the prediction model to complete the task of exhaust emissions prediction from heavy trucks. Experiments show that the prediction model outperforms other state-of-the-art methods in prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李月月发布了新的文献求助20
1秒前
Orange应助554515541采纳,获得10
1秒前
考研小白完成签到,获得积分20
1秒前
1秒前
哲999发布了新的文献求助10
2秒前
呆瓜完成签到,获得积分10
3秒前
zhongu发布了新的文献求助30
3秒前
pengxu发布了新的文献求助10
4秒前
小二郎应助gxf采纳,获得10
4秒前
传奇3应助我姓孙采纳,获得10
4秒前
6秒前
6秒前
天真的邴发布了新的文献求助10
7秒前
8秒前
自信的黑猫完成签到,获得积分20
9秒前
silence发布了新的文献求助10
9秒前
11秒前
猪猪完成签到 ,获得积分10
12秒前
777发布了新的文献求助10
12秒前
彭静琳完成签到,获得积分10
13秒前
黄黄黄发布了新的文献求助30
14秒前
星辰完成签到,获得积分10
14秒前
554515541发布了新的文献求助10
15秒前
16秒前
MOMO完成签到,获得积分10
16秒前
marymarychou完成签到,获得积分10
17秒前
呜呼啦呼发布了新的文献求助20
18秒前
haofan17完成签到,获得积分10
18秒前
19秒前
19秒前
hope应助WTH采纳,获得10
20秒前
gxf发布了新的文献求助10
21秒前
沈绘绘完成签到,获得积分10
21秒前
科研通AI2S应助小红采纳,获得10
21秒前
22秒前
23秒前
24秒前
学术小沈完成签到,获得积分20
25秒前
554515541完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655