CT Image Denoising Model Using Image Segmentation for Image Quality Enhancement for Liver Tumor Detection Using CNN

人工智能 计算机科学 降噪 非本地手段 计算机视觉 噪音(视频) 图像复原 图像处理 图像噪声 修补 散斑噪声 图像质量 模式识别(心理学) 图像分割 分割 图像(数学)
作者
Venkateswarlu Gavini,Gurusamy Ramasamy Jothi Lakshmi
出处
期刊:Traitement Du Signal [International Information and Engineering Technology Association]
卷期号:39 (5): 1807-1814 被引量:7
标识
DOI:10.18280/ts.390540
摘要

Image denoising is an important concept in image processing for improving the image quality. It is difficult to remove noise from images because of the various causes of noise. Imaging noise is made up of many different types of noise, including Gaussian, impulse, salt, pepper, and speckle noise. Increasing emphasis has been paid to Convolution Neural Networks (CNNs) in image denoising. Image denoising has been researched using a variety of CNN approaches. For the evaluation of these methods, various datasets were utilized. Liver Tumor is the leading cause of cancer-related death worldwide. By using Computed Tomography (CT) to detect liver tumor early, millions of patients could be spared from death each year. Denoising a picture means cleaning up an image that has been corrupted by unwanted noise. Due to the fact that noise, edge, and texture are all high frequency components, denoising can be tricky, and the resulting images may be missing some finer features. Applications where recovering the original image content is vital for good performance benefit greatly from image denoising, including image reconstruction, activity recognition, image restoration, segmentation techniques, and image classification. Tumors of this type are difficult to detect and are almost always discovered at an advanced stage, posing a serious threat to the patient's life. As a result, finding a tumour at an early stage is critical. Tumors can be detected non-invasively using medical image processing. There is a pressing need for software that can automatically read, detect, and evaluate CT scans by removing noise from the images. As a result, any system must deal with a bottleneck in liver segmentation and extraction from CT scans. To segment and classify liver CT images after denoising images, a deep CNN technique is proposed in this research. An Image Quality Enhancement model with Image Denoising and Edge based Segmentation (IQE-ID-EbS) is proposed in this research that effectively reduces noise levels in the image and then performs edge based segmentation for feature extraction from the CT images. The proposed model is compared with the traditional models and the results represent that the proposed model performance is better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
Polymer72应助梦罪者采纳,获得10
5秒前
healthy完成签到 ,获得积分10
6秒前
搞怪乐儿发布了新的文献求助10
6秒前
7秒前
tjykdxzx发布了新的文献求助10
7秒前
周少应助smjjs采纳,获得10
7秒前
Barry完成签到,获得积分10
8秒前
11秒前
搞怪乐儿完成签到,获得积分10
16秒前
晓晓完成签到,获得积分10
17秒前
19秒前
田様应助dafa采纳,获得10
22秒前
hihi完成签到,获得积分10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
24秒前
25秒前
害怕的冬灵完成签到,获得积分10
28秒前
可爱的函函应助LZJ采纳,获得10
28秒前
星希完成签到 ,获得积分10
28秒前
31秒前
ting发布了新的文献求助10
32秒前
wanci应助鳗鱼鞋垫采纳,获得10
33秒前
科研通AI2S应助称心的绿柏采纳,获得30
34秒前
故意的傲柏完成签到 ,获得积分10
39秒前
Barry发布了新的文献求助10
40秒前
43秒前
王守奇发布了新的文献求助10
46秒前
48秒前
48秒前
流口水完成签到,获得积分10
48秒前
49秒前
1111111111111发布了新的文献求助10
51秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342393
求助须知:如何正确求助?哪些是违规求助? 2969582
关于积分的说明 8640296
捐赠科研通 2649555
什么是DOI,文献DOI怎么找? 1450765
科研通“疑难数据库(出版商)”最低求助积分说明 671964
邀请新用户注册赠送积分活动 661204