CT Image Denoising Model Using Image Segmentation for Image Quality Enhancement for Liver Tumor Detection Using CNN

人工智能 计算机科学 降噪 非本地手段 计算机视觉 噪音(视频) 图像复原 图像处理 图像噪声 修补 散斑噪声 图像质量 模式识别(心理学) 图像分割 分割 图像(数学)
作者
Venkateswarlu Gavini,Gurusamy Ramasamy Jothi Lakshmi
出处
期刊:Traitement Du Signal [International Information and Engineering Technology Association]
卷期号:39 (5): 1807-1814 被引量:7
标识
DOI:10.18280/ts.390540
摘要

Image denoising is an important concept in image processing for improving the image quality. It is difficult to remove noise from images because of the various causes of noise. Imaging noise is made up of many different types of noise, including Gaussian, impulse, salt, pepper, and speckle noise. Increasing emphasis has been paid to Convolution Neural Networks (CNNs) in image denoising. Image denoising has been researched using a variety of CNN approaches. For the evaluation of these methods, various datasets were utilized. Liver Tumor is the leading cause of cancer-related death worldwide. By using Computed Tomography (CT) to detect liver tumor early, millions of patients could be spared from death each year. Denoising a picture means cleaning up an image that has been corrupted by unwanted noise. Due to the fact that noise, edge, and texture are all high frequency components, denoising can be tricky, and the resulting images may be missing some finer features. Applications where recovering the original image content is vital for good performance benefit greatly from image denoising, including image reconstruction, activity recognition, image restoration, segmentation techniques, and image classification. Tumors of this type are difficult to detect and are almost always discovered at an advanced stage, posing a serious threat to the patient's life. As a result, finding a tumour at an early stage is critical. Tumors can be detected non-invasively using medical image processing. There is a pressing need for software that can automatically read, detect, and evaluate CT scans by removing noise from the images. As a result, any system must deal with a bottleneck in liver segmentation and extraction from CT scans. To segment and classify liver CT images after denoising images, a deep CNN technique is proposed in this research. An Image Quality Enhancement model with Image Denoising and Edge based Segmentation (IQE-ID-EbS) is proposed in this research that effectively reduces noise levels in the image and then performs edge based segmentation for feature extraction from the CT images. The proposed model is compared with the traditional models and the results represent that the proposed model performance is better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChatGPT发布了新的文献求助10
1秒前
情怀应助爱学习的曼卉采纳,获得10
1秒前
温梦花雨完成签到 ,获得积分10
3秒前
温梦花雨完成签到 ,获得积分10
3秒前
朝花夕拾完成签到 ,获得积分10
3秒前
HYT发布了新的文献求助10
4秒前
人谷呀完成签到 ,获得积分10
4秒前
6秒前
8秒前
111发布了新的文献求助10
8秒前
李健应助勤劳的小蜜蜂采纳,获得10
9秒前
Jes完成签到,获得积分20
9秒前
梅子酒发布了新的文献求助10
10秒前
丘山发布了新的文献求助10
10秒前
10秒前
古月发布了新的文献求助10
10秒前
10秒前
ChatGPT发布了新的文献求助10
10秒前
zhouzehua1003完成签到,获得积分10
12秒前
汉堡包应助睡不完的觉采纳,获得10
12秒前
14秒前
阿槿发布了新的文献求助10
14秒前
喀迈拉关注了科研通微信公众号
15秒前
人谷完成签到 ,获得积分10
17秒前
18秒前
清沐颖涵发布了新的文献求助10
19秒前
19秒前
19秒前
bmt发布了新的文献求助10
20秒前
美梦星发布了新的文献求助10
22秒前
科研通AI5应助111采纳,获得10
22秒前
23秒前
23秒前
24秒前
24秒前
27秒前
27秒前
JamesPei应助夏安采纳,获得10
27秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710