Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance

自愈水凝胶 材料科学 极限抗拉强度 离子电导率 导电体 标度系数 聚丙烯酰胺 韧性 化学工程 复合材料 高分子化学 化学 电解质 电极 制作 病理 物理化学 工程类 医学 替代医学
作者
Chen‐Yan Zhang,Jikui Wang,Shuo Li,Xinquan Zou,Huixian Yin,Yi‐Cheng Huang,Feilong Dong,Peiyuan Li,Yaoting Song
出处
期刊:European Polymer Journal [Elsevier]
卷期号:186: 111827-111827 被引量:50
标识
DOI:10.1016/j.eurpolymj.2023.111827
摘要

As an ideal material for flexible sensors, electrically conductive hydrogels (ECHs) has been faced with water loss and easy freezing, which affects the conductive and tensile properties. Polyacrylamide/sodium alginate/LiCl (PAM/SA/LiCl) hydrogel was constructed to enhance the anti-freezing property without deficiencies of tensile and electrical performance. A semi-interpenetrating network (semi-IPN) was formed by PAM and SA through hydrogen bonding, which performed excellent mechanical property (fracture strain 2100%, fracture stress 110 KPa). LiCl contributed to the high ionic conductivity (up to 21.7 S/m) and sensitivity (Gauge Factor (GF) = 17.45). Double hydrogen bonding of SA and PAM, hydration of LiCl and ion interaction between SA and lithium ion improved the anti-freezing performance and mechanical property of the hydrogel together. The proportion of non-freezing water in system was proved to be significantly increased. The comprehensive properties of the hydrogels were evaluated and PAM/SA/3M LiCl hydrogel kept conductive without obvious loss of stretchability at −30 °C. The PAM/SA/LiCl hydrogel integrates remarkable toughness, conductivity, sensitivity and anti-freezing property, which is a suitable choice in smart wearable devices, soft robots and medical monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liudiqiu应助Ll采纳,获得10
刚刚
灬乔关注了科研通微信公众号
1秒前
张菁完成签到,获得积分10
1秒前
菠萝吹雪应助xiachengcs采纳,获得30
2秒前
洋洋发布了新的文献求助10
2秒前
2秒前
3秒前
威武爆米花完成签到,获得积分10
4秒前
在水一方应助zhaowenxian采纳,获得10
5秒前
SS给SS的求助进行了留言
5秒前
6秒前
8秒前
Linden_bd完成签到 ,获得积分10
8秒前
科研通AI5应助yangyangyang采纳,获得10
8秒前
8秒前
漠北完成签到,获得积分10
8秒前
8秒前
Isabel完成签到 ,获得积分10
9秒前
起风了完成签到,获得积分10
9秒前
10秒前
Zjn-完成签到,获得积分10
10秒前
良辰应助lost采纳,获得10
10秒前
靓丽梦桃完成签到,获得积分20
11秒前
11秒前
0306完成签到,获得积分10
11秒前
李创业完成签到,获得积分10
11秒前
庆次完成签到 ,获得积分10
12秒前
ZY发布了新的文献求助10
12秒前
36456657应助跳跃的罡采纳,获得10
12秒前
36456657应助跳跃的罡采纳,获得10
12秒前
pluto应助跳跃的罡采纳,获得10
12秒前
丘比特应助跳跃的罡采纳,获得10
12秒前
12秒前
左手树完成签到,获得积分10
13秒前
13秒前
踏实的似狮完成签到,获得积分10
13秒前
正直画笔完成签到 ,获得积分10
13秒前
草履虫完成签到 ,获得积分10
14秒前
靓丽梦桃发布了新的文献求助10
14秒前
李创业发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762