A causal inference analysis of injury severity in motorcyclist crashes in Brazilian highway databases

毒物控制 职业安全与健康 伤害预防 因果推理 推论 人为因素与人体工程学 运输工程 自杀预防 法律工程学 数据库 工程类 计算机科学 环境卫生 医学 统计 人工智能 数学 病理
作者
Francisco Altanizio Batista de Castro,Flávio José Craveiro Cunto
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:: 1-21
标识
DOI:10.1080/19439962.2024.2332735
摘要

Motorcyclist fatalities have risen in Latin and Asian countries, highlighting the necessity for a systematic approach through the Safe System (SS) to achieve zero fatalities. Traditional studies often rely on data-driven methodologies, which may lead to biased results and may fall short of capturing the systematic SS perspective. This paper develops a causal analysis of crash severity involving motorcyclists based on the SS approach and Pearl's causal inference paradigm, using observational data. Initially, the main sources of bias related to traditional categorical modeling applied to crash severity analysis were illustrated through a simulation example. Subsequently, a literature review was conducted to establish a conceptual framework rooted in the SS. Finally, causal hypotheses were formulated and tested using structural equation modeling applied to data collected from motorcyclist crashes on federal highways in the state of Ceará/Brazil. The outcomes of the causal model support the initial hypothesis that alcohol use significantly contributes to the severity outcome of motorcycles-related crashes. The model unveils a noteworthy association between weekends and alcohol consumption and an inclination among younger individuals toward newer motorcycles with more powerful engines. The adoption of a causal approach enhances result reliability by controlling for confounding variables and incorporating a theoretical framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓钙片完成签到,获得积分10
刚刚
lx完成签到,获得积分20
刚刚
刚刚
舒心的耷完成签到,获得积分10
刚刚
shy完成签到,获得积分10
1秒前
lyy完成签到 ,获得积分10
1秒前
panpanh完成签到,获得积分10
2秒前
隐形傲霜完成签到 ,获得积分10
2秒前
悦耳听芹发布了新的文献求助10
2秒前
大吴克发布了新的文献求助10
2秒前
JiegeSCI完成签到,获得积分10
3秒前
西红适完成签到,获得积分10
3秒前
Jackson_Cai完成签到,获得积分10
3秒前
ywjkeyantong完成签到,获得积分10
4秒前
sai完成签到,获得积分10
4秒前
4秒前
roking完成签到,获得积分10
5秒前
大模型应助坚强的严青采纳,获得10
6秒前
year完成签到,获得积分10
6秒前
Ashley完成签到,获得积分10
7秒前
7秒前
悦耳听芹完成签到,获得积分10
7秒前
红鲤完成签到,获得积分10
8秒前
hh完成签到 ,获得积分10
9秒前
v1008完成签到,获得积分10
9秒前
lime完成签到,获得积分10
9秒前
paleo-地质完成签到,获得积分10
10秒前
冻冻妖完成签到,获得积分10
11秒前
坚强的严青完成签到,获得积分20
11秒前
Ava应助Emily采纳,获得10
12秒前
寒士完成签到,获得积分10
12秒前
小龅牙吖完成签到,获得积分10
12秒前
努力的科研小趴菜完成签到,获得积分10
12秒前
温暖的定格完成签到,获得积分10
13秒前
平平无奇种花小天才完成签到,获得积分10
14秒前
a龙完成签到,获得积分10
15秒前
ZRBY完成签到,获得积分10
17秒前
侃侃完成签到,获得积分10
17秒前
111完成签到,获得积分10
17秒前
ws556发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890