Structural Brain Connectivity and Treatment Improvement in Mood Disorder

楔前 默认模式网络 心理学 连接体 心情 舌回 神经科学 情绪障碍 精神科 功能磁共振成像 功能连接 焦虑
作者
Sarita Dam,Jean-Marie Batail,Guillaume Robert,Dominique Drapier,Pierre Maurel,Julie Coloigner
出处
期刊:Brain connectivity [Mary Ann Liebert]
标识
DOI:10.1089/brain.2023.0063
摘要

Background: The treatment of depressive episodes is well established, with clearly demonstrated effectiveness of antidepressants and psychotherapies. However, more than one-third of depressed patients do not respond to treatment. Identifying the brain structural basis of treatment-resistant depression could prevent useless pharmacological prescriptions, adverse events, and lost therapeutic opportunities. Methods: Using diffusion magnetic resonance imaging, we performed structural connectivity analyses on a cohort of 154 patients with mood disorder (MD) – and 77 sex- and age-matched healthy control (HC) participants. To assess illness improvement, the MD patients went through two clinical interviews at baseline and at 6-month follow-up and were classified based on the Clinical Global Impression-Improvement score into improved or not-improved. First, the threshold-free network-based statistics was conducted to measure the differences in regional network architecture. Second, nonparametric permutations tests were performed on topological metrics based on graph theory to examine differences in connectome organization. Results: The threshold-free network-based statistics revealed impaired connections involving regions of the basal ganglia in MD patients compared to HC. Significant increase of local efficiency and clustering coefficient was found in the lingual gyrus, insula and amygdala in the MD group. Compared with the not-improved, the improved displayed significantly reduced network integration and segregation, predominately in the default-mode regions, including the precuneus, middle temporal lobe and rostral anterior cingulate. Conclusions: This study highlights the involvement of regions belonging to the basal ganglia, the fronto-limbic network and the default mode network, leading to a better understanding of MD disease and its unfavorable outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flyabc完成签到,获得积分10
1秒前
qp发布了新的文献求助10
1秒前
香蕉觅云应助刘鹏宇采纳,获得10
2秒前
可爱的函函应助沉静哲瀚采纳,获得10
2秒前
2秒前
2秒前
乖乖完成签到,获得积分20
2秒前
3秒前
3秒前
小豆芽儿完成签到,获得积分20
3秒前
布鲁鲁完成签到,获得积分10
5秒前
偷猪剑客完成签到,获得积分10
5秒前
SQ发布了新的文献求助10
5秒前
6秒前
李健应助强健的月饼采纳,获得30
6秒前
陶1122完成签到,获得积分10
6秒前
6秒前
changaipei完成签到,获得积分10
7秒前
7秒前
李子完成签到,获得积分10
7秒前
8秒前
8秒前
共享精神应助YAOYAO采纳,获得10
8秒前
qp完成签到,获得积分10
8秒前
9秒前
咕噜咕噜完成签到,获得积分20
10秒前
HEIKU应助kiska采纳,获得10
10秒前
10秒前
单薄茗完成签到,获得积分10
10秒前
10秒前
刘鹏宇完成签到,获得积分10
11秒前
danrushui777完成签到,获得积分10
11秒前
慕青应助李子采纳,获得10
11秒前
无心的怜烟完成签到,获得积分10
11秒前
拼搏的沅完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
11111111111完成签到,获得积分10
12秒前
清辉月凝发布了新的文献求助10
12秒前
天天快乐应助无不破哉采纳,获得10
12秒前
夏末完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678