Comprehensive prediction and analysis of human protein essentiality based on a pre-trained protein large language model

计算机科学 自然语言处理 人工智能
作者
B. S. Kang,Rui Fan,Chunmei Cui,Qinghua Cui
标识
DOI:10.1101/2024.03.26.586900
摘要

Abstract Human essential genes and their protein products are indispensable for the viability and development of the individuals. Thus, it is quite important to decipher the essential proteins and up to now numerous computational methods have been developed for the above purpose. However, the current methods failed to comprehensively measure human protein essentiality at levels of humans, human cell lines, and mice orthologues. For doing so, here we developed Protein Importance Calculator (PIC), a sequence-based deep learning model, which was built by fine-tuning a pre-trained protein language model. As a result, PIC outperformed existing methods by increasing 5.13%-12.10% AUROC for predicting essential proteins at human cell-line level. In addition, it improved an average of 9.64% AUROC on 323 human cell lines compared to the only existing cell line-specific method, DeepCellEss. Moreover, we defined Protein Essential Score (PES) to quantify protein essentiality based on PIC and confirmed its power of measuring human protein essentiality and functional divergence across the above three levels. Finally, we successfully used PES to identify prognostic biomarkers of breast cancer and at the first time to quantify the essentiality of 617462 human microproteins. Key Points PIC outperformed existing computational methods for predicting essential proteins. PIC could comprehensively predict human protein essentiality at levels of human, human cell lines and mice orthologues at the same time. PES could serve as a potential metric to quantify the essentiality of both human proteins and human microproteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
柳絮完成签到,获得积分10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
何苏颜完成签到,获得积分10
1秒前
活力初蝶发布了新的文献求助10
1秒前
灿cancan发布了新的文献求助10
1秒前
Alicia发布了新的文献求助10
2秒前
2秒前
3秒前
想去银行借点钱花完成签到,获得积分10
3秒前
传奇3应助忘忧草采纳,获得10
4秒前
panfan发布了新的文献求助10
4秒前
4秒前
咔什么嚓完成签到,获得积分10
4秒前
李爱国应助ThoseRangers0624采纳,获得10
4秒前
W851201002完成签到,获得积分10
5秒前
魔幻灵槐完成签到,获得积分10
5秒前
呆萌南露完成签到,获得积分10
5秒前
科研通AI2S应助调皮时光采纳,获得10
5秒前
ebbinghuazhu发布了新的文献求助10
6秒前
醒醒完成签到,获得积分10
6秒前
7秒前
胡不言完成签到,获得积分10
8秒前
无意的寻琴完成签到 ,获得积分10
8秒前
NexusExplorer应助崔广超采纳,获得10
8秒前
灿cancan完成签到,获得积分10
9秒前
CYX发布了新的文献求助10
9秒前
彭于晏应助jennynnny采纳,获得10
9秒前
花花完成签到,获得积分20
9秒前
9秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168966
求助须知:如何正确求助?哪些是违规求助? 2820245
关于积分的说明 7929811
捐赠科研通 2480332
什么是DOI,文献DOI怎么找? 1321320
科研通“疑难数据库(出版商)”最低求助积分说明 633191
版权声明 602497