Semi-Fragile Neural Network Watermarking Based on Adversarial Examples

对抗制 数字水印 人工神经网络 计算机科学 人工智能 图像(数学)
作者
Zihan Yuan,Xinpeng Zhang,Zichi Wang,Zhaoxia Yin
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2775-2790
标识
DOI:10.1109/tetci.2024.3372373
摘要

Deep neural networks (DNNs) may be subject to various modifications during transmission and use. Regular processing operations do not affect the functionality of a model, while malicious tampering will cause serious damage. Therefore, it is crucial to determine the availability of a DNN model. To address this issue, we propose a semi-fragile black-box watermarking method that can distinguish between accidental modification and malicious tampering of DNNs, focusing on the privacy and security of neural network models. Specifically, for a given model, a strategy is designed to generate semi-fragile and sensitive samples using adversarial example techniques without decreasing the model accuracy. The model outputs for these samples are extremely sensitive to malicious tampering and robust to accidental modification. According to these properties, accidental modification and malicious tampering can be distinguished to assess the availability of a watermarked model. Extensive experiments demonstrate that the proposed method can detect malicious model tampering with high accuracy up to 100% while tolerating accidental modifications such as fine-tuning, pruning, and quantitation with the accuracy exceed 75%. Moreover, our semi-fragile neural network watermarking approach can be easily extended to various DNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
李涵完成签到,获得积分10
1秒前
欣欣完成签到,获得积分10
2秒前
傲娇林发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
研友_Z729Mn发布了新的文献求助10
6秒前
独特跳跳糖完成签到 ,获得积分10
7秒前
7秒前
hyl-tcm完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
LL发布了新的文献求助10
10秒前
xavier发布了新的文献求助10
10秒前
10秒前
孙意冉发布了新的文献求助10
11秒前
12秒前
hd发布了新的文献求助10
13秒前
14秒前
kakainho完成签到,获得积分10
14秒前
14秒前
坚定寒松完成签到 ,获得积分10
15秒前
15秒前
沈迎南发布了新的文献求助10
15秒前
甜甜寄凡发布了新的文献求助10
16秒前
Dr.feng完成签到,获得积分10
17秒前
jihenyouai0213完成签到,获得积分10
17秒前
可靠橘子发布了新的文献求助10
18秒前
等待的mango应助群众采纳,获得10
19秒前
lijunlhc完成签到,获得积分10
19秒前
冷酷的冰夏完成签到,获得积分10
19秒前
xxfsx应助孤独的万言采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
凯凯发布了新的文献求助10
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474