Semi-Fragile Neural Network Watermarking Based on Adversarial Examples

对抗制 数字水印 人工神经网络 计算机科学 人工智能 图像(数学)
作者
Zihan Yuan,Xinpeng Zhang,Zichi Wang,Zhaoxia Yin
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2775-2790
标识
DOI:10.1109/tetci.2024.3372373
摘要

Deep neural networks (DNNs) may be subject to various modifications during transmission and use. Regular processing operations do not affect the functionality of a model, while malicious tampering will cause serious damage. Therefore, it is crucial to determine the availability of a DNN model. To address this issue, we propose a semi-fragile black-box watermarking method that can distinguish between accidental modification and malicious tampering of DNNs, focusing on the privacy and security of neural network models. Specifically, for a given model, a strategy is designed to generate semi-fragile and sensitive samples using adversarial example techniques without decreasing the model accuracy. The model outputs for these samples are extremely sensitive to malicious tampering and robust to accidental modification. According to these properties, accidental modification and malicious tampering can be distinguished to assess the availability of a watermarked model. Extensive experiments demonstrate that the proposed method can detect malicious model tampering with high accuracy up to 100% while tolerating accidental modifications such as fine-tuning, pruning, and quantitation with the accuracy exceed 75%. Moreover, our semi-fragile neural network watermarking approach can be easily extended to various DNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lllll07完成签到 ,获得积分10
1秒前
YNYang完成签到 ,获得积分10
1秒前
yzy发布了新的文献求助10
1秒前
书生发布了新的文献求助10
3秒前
SSS发布了新的文献求助10
4秒前
文文发布了新的文献求助10
6秒前
线条小狗发布了新的文献求助10
6秒前
7秒前
今后应助guoguo采纳,获得10
7秒前
充电宝应助蒙豆儿采纳,获得10
7秒前
8秒前
yzy完成签到,获得积分10
10秒前
江风海韵完成签到,获得积分10
10秒前
奥特超曼应助zhq采纳,获得10
11秒前
13秒前
yydragen应助高梦祥采纳,获得50
13秒前
13秒前
悦耳如彤发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
18秒前
如意枫叶发布了新的文献求助10
19秒前
Lost发布了新的文献求助30
19秒前
风清扬应助呜呜呜采纳,获得10
20秒前
Lucas应助xyx采纳,获得10
21秒前
guoguo发布了新的文献求助10
21秒前
乂贰ZERO叁发布了新的文献求助10
21秒前
22秒前
可爱的函函应助Steven采纳,获得10
22秒前
ay完成签到,获得积分10
24秒前
蒙豆儿发布了新的文献求助10
24秒前
24秒前
Owen应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得20
25秒前
哈哈哈应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176