Exploring and Designing Potential Inhibitors of SIRT2 in Natural Products by Artificial Intelligence (AI) and Molecular Dynamics Methods

化学 SIRT2 自然(考古学) 生化工程 分子动力学 人工智能 计算生物学 计算化学 计算机科学 生物化学 工程类 锡尔图因 考古 历史 生物 NAD+激酶
作者
Yangyang Ni,J. Bai,Yuqi Zhang,Haoran Qiao,Liqun Liang,Junfeng Wan,Yanyan Zhu,Haijing Cao,Huiyu Li,Qingjie Zhao
出处
期刊:Letters in Drug Design & Discovery [Bentham Science]
卷期号:21 (16): 3542-3554
标识
DOI:10.2174/0115701808288696240308052948
摘要

Background: The histone deacetylase family of proteins, which includes the sirtuins, participates in a wide range of cellular processes, and is intimately involved in neurodegenerative illnesses. The research on sirtuins has garnered a lot of interest. However, there are currently no effective therapeutic drugs. Methods: In order to explore the potential inhibitors of SIRTs, we first screened four potential lead compounds of SIRT2 in Traditional Chinese Medicine (TCM) for nervous disease using the Auto- Dock Vina method. Then, with Molecular Dynamics (MD) simulation method, we discovered how these inhibitors from Traditional Chinese herbal medicines affect this protein at the atomic level. Results and Discussion: We found hydrophobic interactions between inhibitors and SIRT2 to be crucial. The small molecules have been found to have strong effect on the residues in the zincbinding domain, exhibiting relationship with the signaling pathway. Finally, based on the conformational characteristics and the MD properties of the four potential inhibitors in TCM, we have designed the new skeleton molecules according to the parameters of binding energy, fingerprint similarity, 3D similarity, and RO5, with AI method using MolAICal software. Conclusion: We have proposed the candidate inhibitor of SIRT2. Our research has provided a new approach that can be used to explore potential inhibitors from TCM. This could potentially pave the way for the creation of effective medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dominic7888完成签到,获得积分10
刚刚
猪肉水饺完成签到,获得积分10
1秒前
青春完成签到 ,获得积分10
1秒前
猪肉水饺发布了新的文献求助10
3秒前
锦念应助haibing采纳,获得10
3秒前
5秒前
李爱国应助bofu采纳,获得10
6秒前
goldfish完成签到,获得积分10
6秒前
8秒前
哈比人linling完成签到,获得积分10
8秒前
9秒前
学不会发布了新的文献求助10
9秒前
11秒前
diu完成签到,获得积分10
13秒前
xiuwen完成签到,获得积分10
13秒前
NexusExplorer应助CC采纳,获得10
14秒前
Jasper应助bofu采纳,获得10
15秒前
15秒前
15秒前
kx发布了新的文献求助10
16秒前
与梦随行2011完成签到,获得积分10
16秒前
Z121完成签到 ,获得积分10
16秒前
16秒前
18秒前
852应助起起采纳,获得10
19秒前
Bear应助舒服的笑旋采纳,获得10
20秒前
吴青应助舒服的笑旋采纳,获得10
20秒前
灵巧高山应助舒服的笑旋采纳,获得10
20秒前
荣耀发布了新的文献求助10
20秒前
21秒前
芝麻汤圆完成签到,获得积分10
22秒前
酷波er应助欣慰海燕采纳,获得10
22秒前
Regina发布了新的文献求助10
22秒前
杏月小女子完成签到,获得积分10
23秒前
小二郎应助bofu采纳,获得10
24秒前
李怼怼发布了新的文献求助10
25秒前
蒲公英发布了新的文献求助10
25秒前
小蘑菇应助huanhuan采纳,获得10
26秒前
自然之水完成签到,获得积分10
26秒前
kingwill应助王雪采纳,获得20
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551910
求助须知:如何正确求助?哪些是违规求助? 3128345
关于积分的说明 9377313
捐赠科研通 2827348
什么是DOI,文献DOI怎么找? 1554303
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714834