Non-invasive assessment of response to transcatheter arterial chemoembolization for hepatocellular carcinoma with the deep neural networks-based radiomics nomogram

医学 列线图 无线电技术 肝细胞癌 经导管动脉化疗栓塞 逻辑回归 放射科 肿瘤科 内科学
作者
Yushuang Liu,Haohuan Li,Xinhua Li,Weiwen Zhou,Lifu Lin,Xiaohong Chen
出处
期刊:Acta Radiologica [SAGE]
卷期号:65 (6): 535-545 被引量:3
标识
DOI:10.1177/02841851241229185
摘要

Background Transcatheter arterial chemoembolization (TACE) is a mainstay treatment for intermediate and advanced hepatocellular carcinoma (HCC), with the potential to enhance patient survival. Preoperative prediction of postoperative response to TACE in patients with HCC is crucial. Purpose To develop a deep neural network (DNN)-based nomogram for the non-invasive and precise prediction of TACE response in patients with HCC. Material and Methods We retrospectively collected clinical and imaging data from 110 patients with HCC who underwent TACE surgery. Radiomics features were extracted from specific imaging methods. We employed conventional machine-learning algorithms and a DNN-based model to construct predictive probabilities (RScore). Logistic regression helped identify independent clinical risk factors, which were integrated with RScore to create a nomogram. We evaluated diagnostic performance using various metrics. Results Among the radiomics models, the DNN_LASSO-based one demonstrated the highest predictive accuracy (area under the curve [AUC] = 0.847, sensitivity = 0.892, specificity = 0.791). Peritumoral enhancement and alkaline phosphatase were identified as independent risk factors. Combining RScore with these clinical factors, a DNN-based nomogram exhibited superior predictive performance (AUC = 0.871, sensitivity = 0.844, specificity = 0.873). Conclusion In this study, we successfully developed a deep learning-based nomogram that can noninvasively and accurately predict TACE response in patients with HCC, offering significant potential for improving the clinical management of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸡蛋饼波比完成签到 ,获得积分10
刚刚
气泡水发布了新的文献求助10
刚刚
念心发布了新的文献求助10
1秒前
Soin应助DDD采纳,获得10
1秒前
cat完成签到,获得积分10
2秒前
ZhJF完成签到 ,获得积分10
2秒前
靓丽的豌豆完成签到,获得积分10
2秒前
鲤鱼水壶完成签到,获得积分10
3秒前
3秒前
zengyiqiao完成签到,获得积分10
4秒前
xxxx发布了新的文献求助10
4秒前
小蘑菇应助仁爱海莲采纳,获得10
4秒前
5秒前
领导范儿应助贱小贱采纳,获得10
6秒前
缓慢修杰发布了新的文献求助10
7秒前
7秒前
韩小寒qqq完成签到,获得积分10
7秒前
好困应助zxs采纳,获得10
8秒前
8秒前
认真写论文的小梁完成签到,获得积分10
8秒前
完美世界应助STAUDINGER采纳,获得10
8秒前
9秒前
Sandy完成签到,获得积分10
9秒前
yyymmma发布了新的文献求助10
10秒前
易义德发布了新的文献求助10
10秒前
11秒前
lizongying发布了新的文献求助10
12秒前
顺心的老五完成签到,获得积分10
13秒前
13秒前
Kevin完成签到,获得积分10
14秒前
ccleon发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
17秒前
徐徐徐应助YNN采纳,获得10
17秒前
西科Jeremy完成签到,获得积分10
17秒前
阿典完成签到,获得积分10
17秒前
丘比特应助zhangxr采纳,获得10
18秒前
优美苗条发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419