清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Non-invasive assessment of response to transcatheter arterial chemoembolization for hepatocellular carcinoma with the deep neural networks-based radiomics nomogram

医学 列线图 无线电技术 肝细胞癌 经导管动脉化疗栓塞 逻辑回归 放射科 肿瘤科 内科学
作者
Yushuang Liu,Haohuan Li,Xinhua Li,Weiwen Zhou,Lifu Lin,Xiaohong Chen
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:65 (6): 535-545 被引量:3
标识
DOI:10.1177/02841851241229185
摘要

Background Transcatheter arterial chemoembolization (TACE) is a mainstay treatment for intermediate and advanced hepatocellular carcinoma (HCC), with the potential to enhance patient survival. Preoperative prediction of postoperative response to TACE in patients with HCC is crucial. Purpose To develop a deep neural network (DNN)-based nomogram for the non-invasive and precise prediction of TACE response in patients with HCC. Material and Methods We retrospectively collected clinical and imaging data from 110 patients with HCC who underwent TACE surgery. Radiomics features were extracted from specific imaging methods. We employed conventional machine-learning algorithms and a DNN-based model to construct predictive probabilities (RScore). Logistic regression helped identify independent clinical risk factors, which were integrated with RScore to create a nomogram. We evaluated diagnostic performance using various metrics. Results Among the radiomics models, the DNN_LASSO-based one demonstrated the highest predictive accuracy (area under the curve [AUC] = 0.847, sensitivity = 0.892, specificity = 0.791). Peritumoral enhancement and alkaline phosphatase were identified as independent risk factors. Combining RScore with these clinical factors, a DNN-based nomogram exhibited superior predictive performance (AUC = 0.871, sensitivity = 0.844, specificity = 0.873). Conclusion In this study, we successfully developed a deep learning-based nomogram that can noninvasively and accurately predict TACE response in patients with HCC, offering significant potential for improving the clinical management of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助飞快的冷亦采纳,获得10
6秒前
科研小白发布了新的文献求助10
15秒前
15秒前
20秒前
Akim应助supermaltose采纳,获得10
25秒前
方白秋完成签到,获得积分0
26秒前
栾小鱼完成签到,获得积分10
1分钟前
Ivan完成签到,获得积分10
1分钟前
可爱的函函应助紫荆采纳,获得10
2分钟前
2分钟前
w40701完成签到,获得积分10
2分钟前
芹123发布了新的文献求助10
2分钟前
紫荆发布了新的文献求助10
2分钟前
科研小白完成签到,获得积分10
2分钟前
芹123发布了新的文献求助10
3分钟前
超体完成签到 ,获得积分10
3分钟前
芹123完成签到,获得积分10
3分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
11发布了新的文献求助10
4分钟前
123完成签到 ,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
ukz37752发布了新的文献求助200
5分钟前
5分钟前
赘婿应助科研通管家采纳,获得50
5分钟前
5分钟前
nixgnef发布了新的文献求助10
5分钟前
科研通AI5应助armpit采纳,获得10
5分钟前
6分钟前
6分钟前
紫熊完成签到,获得积分10
6分钟前
JamesPei应助snowskating采纳,获得10
6分钟前
AmyHu完成签到,获得积分10
6分钟前
jiacheng发布了新的文献求助10
6分钟前
Alisha完成签到,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926803
求助须知:如何正确求助?哪些是违规求助? 4196382
关于积分的说明 13032610
捐赠科研通 3968735
什么是DOI,文献DOI怎么找? 2175117
邀请新用户注册赠送积分活动 1192274
关于科研通互助平台的介绍 1102675