EXPRESS: A Topic-based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews

分割 明星(博弈论) 计算机科学 自然语言处理 心理学 人工智能 数学 数学分析
作者
Sunghoon Kim,Sanghak Lee,Robert McCulloch
出处
期刊:Journal of Marketing Research [SAGE]
被引量:1
标识
DOI:10.1177/00222437241246752
摘要

Online reviews provide rich information on customer satisfaction, displaying various numeric ratings as well as detailed explanations presented in written form. However, analyzing such data is challenging due to the unstructured nature of text. This article introduces a novel machine-learning method for identifying interpretable key drivers of star ratings from text reviews, which might vary across segments. By adopting the Ising model prior to account for dependence between words, the model simultaneously achieves segmentation, identifies segment-level key topics (i.e., groups of frequently co-occurring words), and estimates the impacts of the selected words on the ratings. The authors first demonstrate that the proposed model successfully identifies segment-specific key drivers of customer satisfaction using illustrative simulated review data. Then, the authors utilize real-world reviews from Yelp for empirical applications. When applied to online reviews of 5,241 Arizona-based restaurants, the model identifies three distinct restaurant segments, each characterized by three to five important topics. The model's performance is evaluated against six benchmark models, encompassing various topic models and latent class regression with variable selection. The comparison results emphasize the proposed model's unique advantages in prediction, interpretability, and handling heterogeneity. Additionally, the authors demonstrate the applicability of the model in examining customer segmentation for individual restaurants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助叮当猫采纳,获得10
刚刚
刚刚
杨乐多完成签到,获得积分10
刚刚
丘比特应助木子李采纳,获得10
刚刚
zqingqing发布了新的文献求助10
1秒前
所所应助hwl采纳,获得10
1秒前
拉面小丸子完成签到,获得积分20
2秒前
思源应助8letters采纳,获得30
2秒前
寻道图强应助jhjh采纳,获得30
2秒前
FiroZhang完成签到,获得积分10
3秒前
3秒前
ddd完成签到 ,获得积分10
3秒前
西门性冷淡完成签到,获得积分10
3秒前
称心茹嫣完成签到 ,获得积分10
3秒前
Cik完成签到,获得积分10
4秒前
4秒前
阿拉斯加发布了新的文献求助200
5秒前
juanjuan应助满意的柏柳采纳,获得10
6秒前
科研通AI2S应助wjadejing采纳,获得10
6秒前
小马甲应助麦麦脆汁狗采纳,获得10
7秒前
完美世界应助沉默的莞采纳,获得10
7秒前
7秒前
明理剑心发布了新的文献求助30
8秒前
9秒前
阳光香完成签到,获得积分10
9秒前
zdl完成签到,获得积分10
10秒前
10秒前
慧敏发布了新的文献求助10
10秒前
10秒前
SciGPT应助gjy采纳,获得10
11秒前
晚湖完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
an发布了新的文献求助10
12秒前
13秒前
科研通AI2S应助干净的井采纳,获得10
14秒前
陶醉琳发布了新的文献求助10
14秒前
咖喱鸡发布了新的文献求助10
14秒前
南乾硕发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148568
求助须知:如何正确求助?哪些是违规求助? 2799708
关于积分的说明 7836427
捐赠科研通 2457069
什么是DOI,文献DOI怎么找? 1307711
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601663