A Topic-Based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews

分割 明星(博弈论) 计算机科学 自然语言处理 心理学 人工智能 数学 数学分析
作者
Sunghoon Kim,Sanghak Lee,Robert McCulloch
出处
期刊:Journal of Marketing Research [SAGE Publishing]
卷期号:61 (6): 1132-1151 被引量:3
标识
DOI:10.1177/00222437241246752
摘要

Online reviews provide rich information on customer satisfaction, displaying various numeric ratings as well as detailed explanations presented in written form. However, analyzing such data is challenging due to the unstructured nature of text. This article introduces a novel machine-learning method for identifying interpretable key drivers of star ratings from text reviews, which might vary across segments. By adopting the Ising model prior to account for dependence between words, the model simultaneously achieves segmentation, identifies segment-level key topics (i.e., groups of frequently co-occurring words), and estimates the impacts of the selected words on the ratings. The authors first demonstrate that the proposed model successfully identifies segment-specific key drivers of customer satisfaction using illustrative simulated review data. Then, the authors utilize real-world reviews from Yelp for empirical applications. When applied to online reviews of 5,241 Arizona-based restaurants, the model identifies three distinct restaurant segments, each characterized by three to five important topics. The model's performance is evaluated against six benchmark models, encompassing various topic models and latent class regression with variable selection. The comparison results emphasize the proposed model's unique advantages in prediction, interpretability, and handling heterogeneity. Additionally, the authors demonstrate the applicability of the model in examining customer segmentation for individual restaurants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助小田儿采纳,获得10
刚刚
ttm发布了新的文献求助10
刚刚
刚刚
NexusExplorer应助动听的半莲采纳,获得10
2秒前
万能图书馆应助哈哈采纳,获得10
3秒前
3秒前
肝不动的牛马完成签到,获得积分10
5秒前
Ilan发布了新的文献求助10
6秒前
花酒发布了新的文献求助10
6秒前
7秒前
小马甲应助xin采纳,获得10
8秒前
8秒前
8秒前
高贵的馒头完成签到,获得积分10
9秒前
不舍天真完成签到,获得积分10
9秒前
wentong完成签到,获得积分10
9秒前
星河清梦发布了新的文献求助30
12秒前
情怀应助zy采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
changping应助花酒采纳,获得10
14秒前
zhangxq关注了科研通微信公众号
15秒前
ding应助花样年华采纳,获得10
15秒前
15秒前
15秒前
tsuki完成签到 ,获得积分10
15秒前
xin完成签到,获得积分10
16秒前
gattina发布了新的文献求助10
16秒前
kiven完成签到 ,获得积分10
16秒前
Emper发布了新的文献求助10
19秒前
21秒前
江屿完成签到,获得积分20
21秒前
21秒前
22秒前
23秒前
丘比特应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834