亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Topic-Based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews

分割 明星(博弈论) 计算机科学 自然语言处理 心理学 人工智能 数学 数学分析
作者
Sunghoon Kim,Sanghak Lee,Robert McCulloch
出处
期刊:Journal of Marketing Research [SAGE Publishing]
卷期号:61 (6): 1132-1151 被引量:2
标识
DOI:10.1177/00222437241246752
摘要

Online reviews provide rich information on customer satisfaction, displaying various numeric ratings as well as detailed explanations presented in written form. However, analyzing such data is challenging due to the unstructured nature of text. This article introduces a novel machine-learning method for identifying interpretable key drivers of star ratings from text reviews, which might vary across segments. By adopting the Ising model prior to account for dependence between words, the model simultaneously achieves segmentation, identifies segment-level key topics (i.e., groups of frequently co-occurring words), and estimates the impacts of the selected words on the ratings. The authors first demonstrate that the proposed model successfully identifies segment-specific key drivers of customer satisfaction using illustrative simulated review data. Then, the authors utilize real-world reviews from Yelp for empirical applications. When applied to online reviews of 5,241 Arizona-based restaurants, the model identifies three distinct restaurant segments, each characterized by three to five important topics. The model's performance is evaluated against six benchmark models, encompassing various topic models and latent class regression with variable selection. The comparison results emphasize the proposed model's unique advantages in prediction, interpretability, and handling heterogeneity. Additionally, the authors demonstrate the applicability of the model in examining customer segmentation for individual restaurants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱宣诚发布了新的文献求助10
刚刚
6秒前
鱼块完成签到 ,获得积分10
9秒前
Lucas应助yifei采纳,获得10
10秒前
andrele发布了新的文献求助10
11秒前
科研通AI6应助杏仁核采纳,获得10
13秒前
朱宣诚完成签到,获得积分10
15秒前
20秒前
么么么发布了新的文献求助10
26秒前
Ava应助12彡采纳,获得10
34秒前
40秒前
么么么完成签到 ,获得积分10
41秒前
12彡发布了新的文献求助10
45秒前
眭超阳完成签到 ,获得积分10
45秒前
思源应助粥粥采纳,获得80
1分钟前
orixero应助粥粥采纳,获得10
1分钟前
爆米花应助粥粥采纳,获得10
1分钟前
共享精神应助粥粥采纳,获得10
1分钟前
852应助粥粥采纳,获得10
1分钟前
无花果应助粥粥采纳,获得10
1分钟前
bkagyin应助粥粥采纳,获得10
1分钟前
星辰大海应助粥粥采纳,获得10
1分钟前
斯文败类应助粥粥采纳,获得10
1分钟前
万能图书馆应助粥粥采纳,获得10
1分钟前
在水一方应助粥粥采纳,获得10
1分钟前
小蘑菇应助粥粥采纳,获得10
1分钟前
科研通AI5应助粥粥采纳,获得10
1分钟前
科研通AI6应助粥粥采纳,获得10
1分钟前
科研通AI6应助粥粥采纳,获得10
1分钟前
科研通AI5应助粥粥采纳,获得10
1分钟前
科研通AI6应助粥粥采纳,获得10
1分钟前
科研通AI5应助粥粥采纳,获得10
1分钟前
1分钟前
Lily完成签到,获得积分10
1分钟前
1分钟前
骆十八发布了新的文献求助30
1分钟前
1分钟前
上官若男应助聪明的心语采纳,获得10
1分钟前
2分钟前
和谐雨竹发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581720
求助须知:如何正确求助?哪些是违规求助? 3999594
关于积分的说明 12381455
捐赠科研通 3674322
什么是DOI,文献DOI怎么找? 2024907
邀请新用户注册赠送积分活动 1058770
科研通“疑难数据库(出版商)”最低求助积分说明 945556