A Topic-Based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews

分割 明星(博弈论) 计算机科学 自然语言处理 心理学 人工智能 数学 数学分析
作者
Sunghoon Kim,Sanghak Lee,Robert McCulloch
出处
期刊:Journal of Marketing Research [SAGE Publishing]
卷期号:61 (6): 1132-1151 被引量:3
标识
DOI:10.1177/00222437241246752
摘要

Online reviews provide rich information on customer satisfaction, displaying various numeric ratings as well as detailed explanations presented in written form. However, analyzing such data is challenging due to the unstructured nature of text. This article introduces a novel machine-learning method for identifying interpretable key drivers of star ratings from text reviews, which might vary across segments. By adopting the Ising model prior to account for dependence between words, the model simultaneously achieves segmentation, identifies segment-level key topics (i.e., groups of frequently co-occurring words), and estimates the impacts of the selected words on the ratings. The authors first demonstrate that the proposed model successfully identifies segment-specific key drivers of customer satisfaction using illustrative simulated review data. Then, the authors utilize real-world reviews from Yelp for empirical applications. When applied to online reviews of 5,241 Arizona-based restaurants, the model identifies three distinct restaurant segments, each characterized by three to five important topics. The model's performance is evaluated against six benchmark models, encompassing various topic models and latent class regression with variable selection. The comparison results emphasize the proposed model's unique advantages in prediction, interpretability, and handling heterogeneity. Additionally, the authors demonstrate the applicability of the model in examining customer segmentation for individual restaurants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助东东采纳,获得10
1秒前
1秒前
2秒前
2秒前
鹅鹅鹅完成签到,获得积分10
2秒前
开朗寇发布了新的文献求助10
2秒前
4秒前
4秒前
一汪完成签到,获得积分10
4秒前
5秒前
hebhm发布了新的文献求助10
5秒前
兴奋的飞薇完成签到,获得积分20
5秒前
5秒前
合适土豆发布了新的文献求助30
6秒前
ztt完成签到 ,获得积分10
6秒前
孤独的幻香完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
CipherSage应助桃子采纳,获得10
9秒前
zxy发布了新的文献求助10
9秒前
22发布了新的文献求助10
9秒前
鹅鹅鹅发布了新的文献求助10
10秒前
10秒前
合适不悔完成签到,获得积分10
10秒前
Astronaut完成签到,获得积分10
10秒前
秀儿发布了新的文献求助10
11秒前
11秒前
12秒前
李爱国应助豆腐采纳,获得10
13秒前
gu发布了新的文献求助10
13秒前
洁净百川完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助50
15秒前
MetalHead关注了科研通微信公众号
15秒前
深情安青应助合适不悔采纳,获得10
16秒前
不宁发布了新的文献求助10
17秒前
00完成签到,获得积分10
18秒前
19秒前
20秒前
爆米花应助眼里的萧萧雨采纳,获得10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130168
求助须知:如何正确求助?哪些是违规求助? 4332482
关于积分的说明 13497794
捐赠科研通 4168934
什么是DOI,文献DOI怎么找? 2285368
邀请新用户注册赠送积分活动 1286331
关于科研通互助平台的介绍 1227284