A Topic-Based Segmentation Model for Identifying Segment-Level Drivers of Star Ratings from Unstructured Text Reviews

分割 明星(博弈论) 计算机科学 自然语言处理 心理学 人工智能 数学 数学分析
作者
Sunghoon Kim,Sanghak Lee,Robert McCulloch
出处
期刊:Journal of Marketing Research [SAGE Publishing]
卷期号:61 (6): 1132-1151 被引量:3
标识
DOI:10.1177/00222437241246752
摘要

Online reviews provide rich information on customer satisfaction, displaying various numeric ratings as well as detailed explanations presented in written form. However, analyzing such data is challenging due to the unstructured nature of text. This article introduces a novel machine-learning method for identifying interpretable key drivers of star ratings from text reviews, which might vary across segments. By adopting the Ising model prior to account for dependence between words, the model simultaneously achieves segmentation, identifies segment-level key topics (i.e., groups of frequently co-occurring words), and estimates the impacts of the selected words on the ratings. The authors first demonstrate that the proposed model successfully identifies segment-specific key drivers of customer satisfaction using illustrative simulated review data. Then, the authors utilize real-world reviews from Yelp for empirical applications. When applied to online reviews of 5,241 Arizona-based restaurants, the model identifies three distinct restaurant segments, each characterized by three to five important topics. The model's performance is evaluated against six benchmark models, encompassing various topic models and latent class regression with variable selection. The comparison results emphasize the proposed model's unique advantages in prediction, interpretability, and handling heterogeneity. Additionally, the authors demonstrate the applicability of the model in examining customer segmentation for individual restaurants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助瑞雪不是雪采纳,获得10
1秒前
XuChaogang完成签到 ,获得积分10
1秒前
孤独的根号三完成签到 ,获得积分10
2秒前
2秒前
无聊的小懒虫完成签到 ,获得积分10
3秒前
布鲁爱思完成签到,获得积分10
8秒前
9秒前
14秒前
15秒前
思源应助lemon 1118采纳,获得30
15秒前
15秒前
wanci应助竺七采纳,获得10
18秒前
小蘑菇应助超级亿先采纳,获得10
19秒前
xm发布了新的文献求助10
19秒前
NexusExplorer应助yy采纳,获得10
20秒前
Syh关注了科研通微信公众号
20秒前
21秒前
zy发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
25秒前
25秒前
26秒前
Chloe发布了新的文献求助30
27秒前
shgd完成签到,获得积分10
27秒前
李j1发布了新的文献求助20
27秒前
lemon 1118发布了新的文献求助30
29秒前
端庄芾发布了新的文献求助10
29秒前
30秒前
31秒前
唯爱林发布了新的文献求助10
31秒前
zhonglv7应助Chloe采纳,获得10
31秒前
31秒前
重重发布了新的文献求助30
32秒前
永远有多远完成签到,获得积分10
32秒前
赘婿应助yes采纳,获得10
33秒前
33秒前
小二发布了新的文献求助10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300488
求助须知:如何正确求助?哪些是违规求助? 4448338
关于积分的说明 13845737
捐赠科研通 4334050
什么是DOI,文献DOI怎么找? 2379324
邀请新用户注册赠送积分活动 1374471
关于科研通互助平台的介绍 1340113