已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Passenger Spatiotemporal Distribution Prediction in Airport Terminals Based on Physics-Guided Spatio-Temporal Graph Convolutional Network and Its Effect on Indoor Environment Prediction

图形 计算机科学 分布(数学) 运输工程 计算机网络 工程类 理论计算机科学 数学 数学分析
作者
Zhiwei Li,Jili Zhang,Hui Guan
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:106: 105375-105375
标识
DOI:10.1016/j.scs.2024.105375
摘要

The airport as an important transportation hub plays a leading role in promoting sustainable cities and new-type urbanization. To boost safe, environmental-friendly and technologically advanced airports, the passenger travel behavior as a core that decides the resource allocation, system tuning and capacity dispatching, must be grasped. Previous research in passenger distribution prediction focused on physics-based methods or only mining temporal dynamics. In this work, a refined passenger distribution prediction was modeled based on a learning-based method embedding physical prior knowledge, and then its effects on indoor environment prediction were analyzed. Among them, based on insect intelligent building architecture, a virtual spatial graph was defined in Guangzhou Baiyun International Airport Terminal 2, then a Wi-Fi positioning system was constructed; Next, a physics-guided spatio-temporal graph convolutional network, considering both the spatial dependencies and the passenger arrival pattern extracted from cost-free flight schedules, was developed for domestic and international passenger distribution predictions with R2 over 0.87 and 0.76 respectively; Lastly, the contributions of predicted occupant densities to the indoor environment prediction were evaluated with results showing that the average R2 for indoor temperature, relative humidity and CO2 concentration prediction was enhanced by 0.4%∼91.5%, 0.2%∼29.7% and 0.4%∼45.4% respectively as the prediction horizon broadening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
独特的念柏完成签到,获得积分10
1秒前
傲娇的小蜜蜂完成签到,获得积分10
2秒前
3秒前
3秒前
Brendan完成签到,获得积分10
5秒前
上官若男应助默许采纳,获得10
6秒前
6秒前
演化的蛙鱼完成签到,获得积分10
7秒前
科研通AI5应助汪姝采纳,获得10
8秒前
8秒前
研友_ZbbaRZ发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
healthy完成签到 ,获得积分10
14秒前
15秒前
HHHH发布了新的文献求助10
18秒前
zhong完成签到,获得积分20
18秒前
zz完成签到 ,获得积分10
19秒前
layman应助冉涛采纳,获得30
19秒前
胡志飞完成签到,获得积分20
21秒前
21秒前
22秒前
Jasper应助123321采纳,获得30
23秒前
24秒前
科研通AI5应助七喜采纳,获得10
24秒前
ZM应助大一泽采纳,获得10
25秒前
26秒前
TIGun发布了新的文献求助10
28秒前
29秒前
30秒前
30秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712637
求助须知:如何正确求助?哪些是违规求助? 3260776
关于积分的说明 9915045
捐赠科研通 2974351
什么是DOI,文献DOI怎么找? 1630867
邀请新用户注册赠送积分活动 773738
科研通“疑难数据库(出版商)”最低求助积分说明 744404