亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Passenger Spatiotemporal Distribution Prediction in Airport Terminals Based on Physics-Guided Spatio-Temporal Graph Convolutional Network and Its Effect on Indoor Environment Prediction

图形 计算机科学 分布(数学) 运输工程 计算机网络 工程类 理论计算机科学 数学 数学分析
作者
Zhiwei Li,Jili Zhang,Hui Guan
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:106: 105375-105375
标识
DOI:10.1016/j.scs.2024.105375
摘要

The airport as an important transportation hub plays a leading role in promoting sustainable cities and new-type urbanization. To boost safe, environmental-friendly and technologically advanced airports, the passenger travel behavior as a core that decides the resource allocation, system tuning and capacity dispatching, must be grasped. Previous research in passenger distribution prediction focused on physics-based methods or only mining temporal dynamics. In this work, a refined passenger distribution prediction was modeled based on a learning-based method embedding physical prior knowledge, and then its effects on indoor environment prediction were analyzed. Among them, based on insect intelligent building architecture, a virtual spatial graph was defined in Guangzhou Baiyun International Airport Terminal 2, then a Wi-Fi positioning system was constructed; Next, a physics-guided spatio-temporal graph convolutional network, considering both the spatial dependencies and the passenger arrival pattern extracted from cost-free flight schedules, was developed for domestic and international passenger distribution predictions with R2 over 0.87 and 0.76 respectively; Lastly, the contributions of predicted occupant densities to the indoor environment prediction were evaluated with results showing that the average R2 for indoor temperature, relative humidity and CO2 concentration prediction was enhanced by 0.4%∼91.5%, 0.2%∼29.7% and 0.4%∼45.4% respectively as the prediction horizon broadening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kristine完成签到 ,获得积分10
1秒前
6秒前
余闻问发布了新的文献求助10
8秒前
zoiaii完成签到 ,获得积分10
11秒前
张志超发布了新的文献求助10
11秒前
mmyhn发布了新的文献求助10
14秒前
Metx完成签到 ,获得积分10
15秒前
19秒前
科研小菜鸟完成签到,获得积分10
25秒前
29秒前
林狗完成签到 ,获得积分10
30秒前
31秒前
H_W完成签到 ,获得积分10
32秒前
yuanyuan发布了新的文献求助10
33秒前
科研通AI6应助科研小菜鸟采纳,获得30
40秒前
科研通AI2S应助丁又菡采纳,获得50
41秒前
43秒前
YAKI完成签到,获得积分10
46秒前
丰富青雪发布了新的文献求助10
47秒前
搜集达人应助Seeking采纳,获得10
48秒前
科研通AI6应助一个西藏采纳,获得10
48秒前
思源应助勇敢且鲁班采纳,获得10
50秒前
彭于晏应助Zenia采纳,获得10
56秒前
清爽的又夏完成签到,获得积分10
57秒前
57秒前
情怀应助YAKI采纳,获得10
59秒前
1分钟前
英姑应助清爽的又夏采纳,获得10
1分钟前
寒冷河马完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助yuanyuan采纳,获得10
1分钟前
任性的水风完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898