Passenger Spatiotemporal Distribution Prediction in Airport Terminals Based on Physics-Guided Spatio-Temporal Graph Convolutional Network and Its Effect on Indoor Environment Prediction

图形 计算机科学 分布(数学) 运输工程 计算机网络 工程类 理论计算机科学 数学 数学分析
作者
Zhiwei Li,Jili Zhang,Hui Guan
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:106: 105375-105375
标识
DOI:10.1016/j.scs.2024.105375
摘要

The airport as an important transportation hub plays a leading role in promoting sustainable cities and new-type urbanization. To boost safe, environmental-friendly and technologically advanced airports, the passenger travel behavior as a core that decides the resource allocation, system tuning and capacity dispatching, must be grasped. Previous research in passenger distribution prediction focused on physics-based methods or only mining temporal dynamics. In this work, a refined passenger distribution prediction was modeled based on a learning-based method embedding physical prior knowledge, and then its effects on indoor environment prediction were analyzed. Among them, based on insect intelligent building architecture, a virtual spatial graph was defined in Guangzhou Baiyun International Airport Terminal 2, then a Wi-Fi positioning system was constructed; Next, a physics-guided spatio-temporal graph convolutional network, considering both the spatial dependencies and the passenger arrival pattern extracted from cost-free flight schedules, was developed for domestic and international passenger distribution predictions with R2 over 0.87 and 0.76 respectively; Lastly, the contributions of predicted occupant densities to the indoor environment prediction were evaluated with results showing that the average R2 for indoor temperature, relative humidity and CO2 concentration prediction was enhanced by 0.4%∼91.5%, 0.2%∼29.7% and 0.4%∼45.4% respectively as the prediction horizon broadening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辐射栗子鸡完成签到,获得积分10
1秒前
Leay关注了科研通微信公众号
1秒前
soul发布了新的文献求助10
1秒前
2秒前
chaserlife完成签到,获得积分10
2秒前
6秒前
7秒前
7秒前
yanmu2010完成签到,获得积分10
8秒前
9秒前
11秒前
Qin完成签到,获得积分10
12秒前
科研通AI6应助金www采纳,获得20
12秒前
home完成签到,获得积分10
13秒前
Jiny发布了新的文献求助10
13秒前
平常的如曼完成签到,获得积分10
13秒前
CodeCraft应助个性的振家采纳,获得10
14秒前
15秒前
18秒前
浮游应助左友铭采纳,获得10
19秒前
CodeCraft应助左友铭采纳,获得10
19秒前
20秒前
soul完成签到,获得积分10
21秒前
21秒前
_Forelsket_完成签到,获得积分10
21秒前
我是微风完成签到,获得积分10
22秒前
22秒前
@斤斤计较发布了新的文献求助10
23秒前
23秒前
华仔应助小碗面采纳,获得10
24秒前
浮游应助阳光的小笼包采纳,获得10
27秒前
陈吉止发布了新的文献求助10
28秒前
leng完成签到 ,获得积分10
28秒前
29秒前
爆米花应助小周想学习采纳,获得30
30秒前
科研人完成签到,获得积分10
34秒前
36秒前
36秒前
36秒前
土多多完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920220
求助须知:如何正确求助?哪些是违规求助? 4191842
关于积分的说明 13019518
捐赠科研通 3962508
什么是DOI,文献DOI怎么找? 2172074
邀请新用户注册赠送积分活动 1190018
关于科研通互助平台的介绍 1098801