Passenger Spatiotemporal Distribution Prediction in Airport Terminals Based on Physics-Guided Spatio-Temporal Graph Convolutional Network and Its Effect on Indoor Environment Prediction

图形 计算机科学 分布(数学) 运输工程 计算机网络 工程类 理论计算机科学 数学 数学分析
作者
Zhiwei Li,Jili Zhang,Hui Guan
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:106: 105375-105375
标识
DOI:10.1016/j.scs.2024.105375
摘要

The airport as an important transportation hub plays a leading role in promoting sustainable cities and new-type urbanization. To boost safe, environmental-friendly and technologically advanced airports, the passenger travel behavior as a core that decides the resource allocation, system tuning and capacity dispatching, must be grasped. Previous research in passenger distribution prediction focused on physics-based methods or only mining temporal dynamics. In this work, a refined passenger distribution prediction was modeled based on a learning-based method embedding physical prior knowledge, and then its effects on indoor environment prediction were analyzed. Among them, based on insect intelligent building architecture, a virtual spatial graph was defined in Guangzhou Baiyun International Airport Terminal 2, then a Wi-Fi positioning system was constructed; Next, a physics-guided spatio-temporal graph convolutional network, considering both the spatial dependencies and the passenger arrival pattern extracted from cost-free flight schedules, was developed for domestic and international passenger distribution predictions with R2 over 0.87 and 0.76 respectively; Lastly, the contributions of predicted occupant densities to the indoor environment prediction were evaluated with results showing that the average R2 for indoor temperature, relative humidity and CO2 concentration prediction was enhanced by 0.4%∼91.5%, 0.2%∼29.7% and 0.4%∼45.4% respectively as the prediction horizon broadening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归仔发布了新的文献求助10
刚刚
诚心的以寒完成签到,获得积分10
1秒前
风信子完成签到,获得积分10
1秒前
1秒前
2秒前
zz发布了新的文献求助10
2秒前
lwq发布了新的文献求助10
2秒前
2秒前
一木张完成签到,获得积分10
3秒前
3秒前
天天快乐应助马霄鑫采纳,获得10
3秒前
3秒前
3秒前
咖啡不苦完成签到,获得积分10
3秒前
CodeCraft应助快乐小海带采纳,获得10
4秒前
叶子发布了新的文献求助10
5秒前
云雨完成签到 ,获得积分10
5秒前
Jasper应助MJJJ采纳,获得10
6秒前
6秒前
7秒前
叁叁肆发布了新的文献求助10
7秒前
超级白玉关注了科研通微信公众号
7秒前
闰土发布了新的文献求助10
8秒前
无辜的鼠标完成签到,获得积分10
8秒前
9秒前
慧慧发布了新的文献求助10
9秒前
困就睡觉完成签到 ,获得积分10
9秒前
淡如水发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
14秒前
14秒前
14秒前
15秒前
如意的小丸子完成签到,获得积分20
15秒前
15秒前
Selena完成签到 ,获得积分20
16秒前
思源应助Passion采纳,获得10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488