Passenger Spatiotemporal Distribution Prediction in Airport Terminals Based on Physics-Guided Spatio-Temporal Graph Convolutional Network and Its Effect on Indoor Environment Prediction

图形 计算机科学 分布(数学) 运输工程 计算机网络 工程类 理论计算机科学 数学 数学分析
作者
Zhiwei Li,Jili Zhang,Hui Guan
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:106: 105375-105375
标识
DOI:10.1016/j.scs.2024.105375
摘要

The airport as an important transportation hub plays a leading role in promoting sustainable cities and new-type urbanization. To boost safe, environmental-friendly and technologically advanced airports, the passenger travel behavior as a core that decides the resource allocation, system tuning and capacity dispatching, must be grasped. Previous research in passenger distribution prediction focused on physics-based methods or only mining temporal dynamics. In this work, a refined passenger distribution prediction was modeled based on a learning-based method embedding physical prior knowledge, and then its effects on indoor environment prediction were analyzed. Among them, based on insect intelligent building architecture, a virtual spatial graph was defined in Guangzhou Baiyun International Airport Terminal 2, then a Wi-Fi positioning system was constructed; Next, a physics-guided spatio-temporal graph convolutional network, considering both the spatial dependencies and the passenger arrival pattern extracted from cost-free flight schedules, was developed for domestic and international passenger distribution predictions with R2 over 0.87 and 0.76 respectively; Lastly, the contributions of predicted occupant densities to the indoor environment prediction were evaluated with results showing that the average R2 for indoor temperature, relative humidity and CO2 concentration prediction was enhanced by 0.4%∼91.5%, 0.2%∼29.7% and 0.4%∼45.4% respectively as the prediction horizon broadening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的书芹完成签到,获得积分10
刚刚
chany发布了新的文献求助10
2秒前
今后应助121采纳,获得10
3秒前
打打应助Robin采纳,获得10
4秒前
7秒前
7秒前
tiantian发布了新的文献求助10
9秒前
pennell01完成签到,获得积分10
10秒前
11秒前
lulu完成签到 ,获得积分10
12秒前
田様应助aidiiiiisk采纳,获得10
13秒前
jing关注了科研通微信公众号
14秒前
chany完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
Hello应助zwb采纳,获得10
17秒前
莫弈花茶发布了新的文献求助10
18秒前
生动越彬发布了新的文献求助10
20秒前
LEE发布了新的文献求助10
21秒前
爆米花应助清清旋雪采纳,获得10
21秒前
可爱的函函应助WILD采纳,获得10
21秒前
小二郎应助清爽灰狼采纳,获得10
22秒前
bad boy发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
Jasper应助kingjames采纳,获得10
25秒前
26秒前
英俊的铭应助xuan采纳,获得10
26秒前
席楠完成签到,获得积分20
26秒前
尤寄风发布了新的文献求助10
28秒前
28秒前
烟雨江南完成签到,获得积分10
29秒前
生动越彬完成签到,获得积分20
29秒前
30秒前
30秒前
31秒前
blue发布了新的文献求助10
31秒前
zwb发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150293
求助须知:如何正确求助?哪些是违规求助? 2801435
关于积分的说明 7844751
捐赠科研通 2458905
什么是DOI,文献DOI怎么找? 1308810
科研通“疑难数据库(出版商)”最低求助积分说明 628582
版权声明 601727