Passenger Spatiotemporal Distribution Prediction in Airport Terminals Based on Physics-Guided Spatio-Temporal Graph Convolutional Network and Its Effect on Indoor Environment Prediction

图形 计算机科学 分布(数学) 运输工程 计算机网络 工程类 理论计算机科学 数学 数学分析
作者
Zhiwei Li,Jili Zhang,Hui Guan
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:106: 105375-105375
标识
DOI:10.1016/j.scs.2024.105375
摘要

The airport as an important transportation hub plays a leading role in promoting sustainable cities and new-type urbanization. To boost safe, environmental-friendly and technologically advanced airports, the passenger travel behavior as a core that decides the resource allocation, system tuning and capacity dispatching, must be grasped. Previous research in passenger distribution prediction focused on physics-based methods or only mining temporal dynamics. In this work, a refined passenger distribution prediction was modeled based on a learning-based method embedding physical prior knowledge, and then its effects on indoor environment prediction were analyzed. Among them, based on insect intelligent building architecture, a virtual spatial graph was defined in Guangzhou Baiyun International Airport Terminal 2, then a Wi-Fi positioning system was constructed; Next, a physics-guided spatio-temporal graph convolutional network, considering both the spatial dependencies and the passenger arrival pattern extracted from cost-free flight schedules, was developed for domestic and international passenger distribution predictions with R2 over 0.87 and 0.76 respectively; Lastly, the contributions of predicted occupant densities to the indoor environment prediction were evaluated with results showing that the average R2 for indoor temperature, relative humidity and CO2 concentration prediction was enhanced by 0.4%∼91.5%, 0.2%∼29.7% and 0.4%∼45.4% respectively as the prediction horizon broadening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丑八怪完成签到,获得积分10
1秒前
脑洞疼应助2856256105采纳,获得10
1秒前
褚晣完成签到,获得积分10
1秒前
M二十四发布了新的文献求助10
1秒前
婉枫完成签到,获得积分10
1秒前
苦涩油麦菜完成签到,获得积分10
1秒前
躺在云上看星星完成签到,获得积分10
1秒前
Mannone完成签到,获得积分10
1秒前
慕青应助阳阳采纳,获得30
2秒前
YLY完成签到,获得积分10
2秒前
LL完成签到 ,获得积分10
3秒前
SherlockJia发布了新的文献求助30
3秒前
3秒前
3秒前
Adore完成签到,获得积分10
4秒前
十个勤天完成签到,获得积分10
4秒前
564654SDA完成签到,获得积分10
5秒前
6秒前
Fall完成签到,获得积分10
6秒前
郭mm完成签到,获得积分10
7秒前
懵懂的采梦应助袋袋采纳,获得10
7秒前
满意的烨磊完成签到,获得积分10
7秒前
要减肥南霜完成签到,获得积分10
7秒前
小龙完成签到,获得积分10
7秒前
刚果王子完成签到,获得积分10
7秒前
7秒前
唐唐完成签到,获得积分10
7秒前
思源应助且欣且行采纳,获得10
8秒前
xxfsx应助躞蹀采纳,获得10
8秒前
田様应助唐艺采纳,获得10
8秒前
咔什么嚓完成签到,获得积分10
9秒前
9秒前
9秒前
星星完成签到,获得积分10
9秒前
小二郎应助玩命的靖仇采纳,获得10
9秒前
yufeng发布了新的文献求助10
9秒前
xxxxhey发布了新的文献求助10
9秒前
湘湘完成签到 ,获得积分10
9秒前
ll完成签到,获得积分10
9秒前
传奇3应助火星上的亦凝采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472