Passenger Spatiotemporal Distribution Prediction in Airport Terminals Based on Physics-Guided Spatio-Temporal Graph Convolutional Network and Its Effect on Indoor Environment Prediction

图形 计算机科学 分布(数学) 运输工程 计算机网络 工程类 理论计算机科学 数学 数学分析
作者
Zhiwei Li,Jili Zhang,Hui Guan
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:106: 105375-105375
标识
DOI:10.1016/j.scs.2024.105375
摘要

The airport as an important transportation hub plays a leading role in promoting sustainable cities and new-type urbanization. To boost safe, environmental-friendly and technologically advanced airports, the passenger travel behavior as a core that decides the resource allocation, system tuning and capacity dispatching, must be grasped. Previous research in passenger distribution prediction focused on physics-based methods or only mining temporal dynamics. In this work, a refined passenger distribution prediction was modeled based on a learning-based method embedding physical prior knowledge, and then its effects on indoor environment prediction were analyzed. Among them, based on insect intelligent building architecture, a virtual spatial graph was defined in Guangzhou Baiyun International Airport Terminal 2, then a Wi-Fi positioning system was constructed; Next, a physics-guided spatio-temporal graph convolutional network, considering both the spatial dependencies and the passenger arrival pattern extracted from cost-free flight schedules, was developed for domestic and international passenger distribution predictions with R2 over 0.87 and 0.76 respectively; Lastly, the contributions of predicted occupant densities to the indoor environment prediction were evaluated with results showing that the average R2 for indoor temperature, relative humidity and CO2 concentration prediction was enhanced by 0.4%∼91.5%, 0.2%∼29.7% and 0.4%∼45.4% respectively as the prediction horizon broadening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的茗茗完成签到,获得积分20
1秒前
3秒前
西瓜西瓜完成签到,获得积分10
3秒前
科研通AI6应助kkk采纳,获得10
4秒前
4秒前
勤奋的绝义完成签到 ,获得积分10
4秒前
SciGPT应助Dara采纳,获得10
4秒前
4秒前
乐乐应助刘欣采纳,获得10
5秒前
搜集达人应助hhh采纳,获得10
6秒前
6秒前
linglingling完成签到 ,获得积分10
7秒前
8秒前
桐桐应助enen采纳,获得10
9秒前
老王发布了新的文献求助10
9秒前
思源应助小福星饼干采纳,获得10
9秒前
sansan发布了新的文献求助10
9秒前
唄肯妮发布了新的文献求助10
9秒前
liujian发布了新的文献求助10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
沉淀完成签到,获得积分20
11秒前
12秒前
梁三柏举报量子星尘求助涉嫌违规
14秒前
14秒前
葳蕤发布了新的文献求助10
15秒前
xiubo128发布了新的文献求助10
16秒前
小智发布了新的文献求助10
17秒前
Criminology34应助mumian采纳,获得20
18秒前
唐唐发布了新的文献求助10
19秒前
在水一方应助liujian采纳,获得10
19秒前
19秒前
杜智敏完成签到,获得积分10
19秒前
zjq完成签到 ,获得积分10
20秒前
leyellows完成签到 ,获得积分10
20秒前
斯文败类应助瑾瑜匿瑕采纳,获得10
20秒前
FashionBoy应助英勇羿采纳,获得10
20秒前
大恐龙的噗噗完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613310
求助须知:如何正确求助?哪些是违规求助? 4698482
关于积分的说明 14898087
捐赠科研通 4735844
什么是DOI,文献DOI怎么找? 2546985
邀请新用户注册赠送积分活动 1510961
关于科研通互助平台的介绍 1473545