Deep learning enabled intrusion detection system for Industrial IOT environment

计算机科学 物联网 入侵检测系统 人工智能 深度学习 机器学习 计算机安全
作者
Himanshu Nandanwar,Rahul Katarya
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123808-123808 被引量:23
标识
DOI:10.1016/j.eswa.2024.123808
摘要

The prevalence of security vulnerabilities in Internet of Things (IoT) applications poses a serious threat to enterprise systems, necessitating sophisticated and reliable defense solutions to counter emerging and evolving threats. For the Industrial Internet of Things (IIoT), stakeholders require trustworthy and sustainable systems that can prevent the loss of human life during critical operations. The impact of multi-variant persistent and sophisticated bot attacks on connected IIoTs is potentially catastrophic, and their detection presents a highly complex and critical challenge. Therefore, there is a pressing need for efficient and timely detection of IIoT botnet attacks. This research paper proposes a robust deep learning model named AttackNet for the detection and classification of different botnet attacks in IIoT based on adaptive based CNN-GRU model. The model is extensively evaluated using the latest dataset and standard performance evaluation metrics, demonstrating its capacity to protect IIoT networks against sophisticated cyber-attacks with a testing accuracy of 99.75%, a loss of 0.0063, precision and recall score of 99.75% and 99.74% respectively. Our proposed model demonstrates superior accuracy, particularly within the N_BaIoT dataset. It achieves an outstanding accuracy of 99.75% across ten classes, surpassing state-of-the-art techniques by a substantial margin ranging from 3.2% to 16.07%. Moreover, the proposed model outperforms state-of-the-art anomaly detection systems in IIoT based on a real-time IoT device dataset in terms of detecting and classifying botnet attacks accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低的紫完成签到,获得积分10
刚刚
晚风完成签到,获得积分10
1秒前
leishenwang完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Sheryl完成签到,获得积分10
2秒前
缓慢晟睿完成签到,获得积分10
2秒前
细心沛山完成签到,获得积分10
2秒前
SYY完成签到,获得积分10
2秒前
Creamsoda完成签到,获得积分10
3秒前
深海鳕鱼完成签到,获得积分10
4秒前
李明涵完成签到 ,获得积分10
4秒前
坚强幼荷发布了新的文献求助10
5秒前
phw完成签到,获得积分10
5秒前
6秒前
6秒前
万能图书馆应助lixm采纳,获得10
6秒前
SYY发布了新的文献求助10
6秒前
4659完成签到 ,获得积分10
6秒前
7秒前
深情安青应助lyh采纳,获得10
7秒前
嘟嘟等文章完成签到,获得积分10
7秒前
1997_Aris发布了新的文献求助10
7秒前
心如止水完成签到,获得积分10
8秒前
张腾飞发布了新的文献求助20
8秒前
Anyemzl完成签到,获得积分10
8秒前
好学的猪发布了新的文献求助10
8秒前
小王爱看文献完成签到 ,获得积分10
8秒前
9秒前
kathy发布了新的文献求助30
10秒前
10秒前
老叶发布了新的文献求助10
11秒前
音悦台发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
13秒前
小yang发布了新的文献求助10
13秒前
13秒前
13秒前
小杨完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582