Error Propagation and Error Mitigation of Multitrack InSAR Observations to 3-D Surface Deformation Estimates

干涉合成孔径雷达 遥感 大地测量学 变形(气象学) 曲面(拓扑) 地质学 不确定性传播 合成孔径雷达 计算机科学 算法 几何学 数学 海洋学
作者
Lele Zhang,Wenhui Han,Zhiwei Jiang,Xiaolan Kong,Qiming Zeng,Yongxiang Xu,Pingping Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3392241
摘要

Three-dimensional (3-D) deformation could be resolved using multi-track Interferometric Synthetic Aperture Radar (InSAR), with the accuracy dependent on the magnitude of multi-source errors within InSAR measurements. To improve the precision of 3-D deformation, it is essential to understand the error propagation mechanism and then develop the methodology for reducing error impacts in 3-D decomposition processing. In this article, we present an error propagation model that incorporates both systematic and stochastic error propagation, which determines the error contribution of the multi-track InSAR measurements in the 3-D direction. The systematic error propagation includes generic systematic error and additional systematic errors (ASE) in the vertical and east directions caused by neglecting the north component. For stochastic error propagation, we construct the covariance matrix by considering variance and correlation from different InSAR measurements when using differential and multi-temporal InSAR techniques. Accordingly, we propose a new 3-D deformation inversion method, combining the covariance matrix and L2-norm regularization based on multi-track InSAR (CovRM-InSAR) to improve the precision of 3-D deformation with noise reduction. In the case study, we applied Sentinel-1A and ALOS-2 InSAR datasets from four tracks to map 3-D velocity in Wuhai and analyzed the time-series error propagation and 3-D uncertainty. The precision of 3-D deformation resolved by CovRM-InSAR has improved by up to 90%, 44%, and 98% in the vertical, east, and north directions, respectively. Additionally, the CovRM-InSAR has effectively reduced the stochastic errors by up to 38%, 15%, and 90% in the vertical, east, and north directions, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助2182265539采纳,获得10
3秒前
3秒前
大模型应助yushanriqing采纳,获得10
3秒前
Alex发布了新的文献求助200
5秒前
来路遥迢发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
Shun完成签到 ,获得积分10
8秒前
等待靖儿发布了新的文献求助10
8秒前
桂d完成签到,获得积分20
9秒前
豪杰完成签到,获得积分10
9秒前
Labubuz完成签到,获得积分10
10秒前
Jason完成签到,获得积分10
10秒前
晶婷完成签到,获得积分10
10秒前
woodenfish发布了新的文献求助10
10秒前
邵邵完成签到,获得积分10
12秒前
闪闪蜜粉完成签到 ,获得积分10
12秒前
12秒前
酷波er应助与你采纳,获得10
13秒前
YuLu完成签到 ,获得积分10
15秒前
Ky_Mac应助科研通管家采纳,获得30
15秒前
辛勤月饼完成签到,获得积分10
15秒前
15秒前
15秒前
打打应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
asdfzxcv应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
大个应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
打打应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
lcc应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709