Error Propagation and Error Mitigation of Multitrack InSAR Observations to 3-D Surface Deformation Estimates

干涉合成孔径雷达 遥感 大地测量学 变形(气象学) 曲面(拓扑) 地质学 不确定性传播 合成孔径雷达 计算机科学 算法 几何学 数学 海洋学
作者
Lele Zhang,Wenhui Han,Zhiwei Jiang,Xiaolan Kong,Qiming Zeng,Yongxiang Xu,Pingping Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3392241
摘要

Three-dimensional (3-D) deformation could be resolved using multi-track Interferometric Synthetic Aperture Radar (InSAR), with the accuracy dependent on the magnitude of multi-source errors within InSAR measurements. To improve the precision of 3-D deformation, it is essential to understand the error propagation mechanism and then develop the methodology for reducing error impacts in 3-D decomposition processing. In this article, we present an error propagation model that incorporates both systematic and stochastic error propagation, which determines the error contribution of the multi-track InSAR measurements in the 3-D direction. The systematic error propagation includes generic systematic error and additional systematic errors (ASE) in the vertical and east directions caused by neglecting the north component. For stochastic error propagation, we construct the covariance matrix by considering variance and correlation from different InSAR measurements when using differential and multi-temporal InSAR techniques. Accordingly, we propose a new 3-D deformation inversion method, combining the covariance matrix and L2-norm regularization based on multi-track InSAR (CovRM-InSAR) to improve the precision of 3-D deformation with noise reduction. In the case study, we applied Sentinel-1A and ALOS-2 InSAR datasets from four tracks to map 3-D velocity in Wuhai and analyzed the time-series error propagation and 3-D uncertainty. The precision of 3-D deformation resolved by CovRM-InSAR has improved by up to 90%, 44%, and 98% in the vertical, east, and north directions, respectively. Additionally, the CovRM-InSAR has effectively reduced the stochastic errors by up to 38%, 15%, and 90% in the vertical, east, and north directions, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助wushangyu采纳,获得10
刚刚
刚刚
飞翔的小土豆完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI6应助凌爽采纳,获得10
1秒前
2秒前
科研通AI6应助L1230采纳,获得150
2秒前
wang发布了新的文献求助10
4秒前
4秒前
ding应助puchang007采纳,获得10
4秒前
悄悄完成签到,获得积分10
4秒前
leey发布了新的文献求助10
5秒前
yuanvv发布了新的文献求助10
5秒前
wsqg123发布了新的文献求助10
5秒前
5秒前
江北发布了新的文献求助10
5秒前
李爱国应助友好胡萝卜采纳,获得10
5秒前
科研通AI6应助景飞丹采纳,获得10
5秒前
Jared应助絮1111采纳,获得10
6秒前
Yume完成签到,获得积分10
6秒前
6秒前
6秒前
张璐完成签到,获得积分20
6秒前
6秒前
7秒前
hao关闭了hao文献求助
7秒前
CipherSage应助李李采纳,获得10
9秒前
ranan完成签到,获得积分10
9秒前
9秒前
小芳完成签到,获得积分10
9秒前
英吉利25发布了新的文献求助10
9秒前
10秒前
10秒前
爱笑寒凝发布了新的文献求助10
11秒前
fyy发布了新的文献求助10
11秒前
Ava应助寒冷又晴采纳,获得10
11秒前
上官若男应助过过过采纳,获得10
11秒前
酷波er应助PG采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996