Error Propagation and Error Mitigation of Multitrack InSAR Observations to 3-D Surface Deformation Estimates

干涉合成孔径雷达 遥感 大地测量学 变形(气象学) 曲面(拓扑) 地质学 不确定性传播 合成孔径雷达 计算机科学 算法 几何学 数学 海洋学
作者
Lele Zhang,Wenhui Han,Zhiwei Jiang,Xiaolan Kong,Qiming Zeng,Yongxiang Xu,Pingping Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3392241
摘要

Three-dimensional (3-D) deformation could be resolved using multi-track Interferometric Synthetic Aperture Radar (InSAR), with the accuracy dependent on the magnitude of multi-source errors within InSAR measurements. To improve the precision of 3-D deformation, it is essential to understand the error propagation mechanism and then develop the methodology for reducing error impacts in 3-D decomposition processing. In this article, we present an error propagation model that incorporates both systematic and stochastic error propagation, which determines the error contribution of the multi-track InSAR measurements in the 3-D direction. The systematic error propagation includes generic systematic error and additional systematic errors (ASE) in the vertical and east directions caused by neglecting the north component. For stochastic error propagation, we construct the covariance matrix by considering variance and correlation from different InSAR measurements when using differential and multi-temporal InSAR techniques. Accordingly, we propose a new 3-D deformation inversion method, combining the covariance matrix and L2-norm regularization based on multi-track InSAR (CovRM-InSAR) to improve the precision of 3-D deformation with noise reduction. In the case study, we applied Sentinel-1A and ALOS-2 InSAR datasets from four tracks to map 3-D velocity in Wuhai and analyzed the time-series error propagation and 3-D uncertainty. The precision of 3-D deformation resolved by CovRM-InSAR has improved by up to 90%, 44%, and 98% in the vertical, east, and north directions, respectively. Additionally, the CovRM-InSAR has effectively reduced the stochastic errors by up to 38%, 15%, and 90% in the vertical, east, and north directions, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DuiK完成签到,获得积分10
刚刚
刚刚
羊羊羊完成签到,获得积分10
刚刚
刚刚
想喝奶茶发布了新的文献求助10
刚刚
刚刚
勤恳的烤鸡完成签到,获得积分10
1秒前
小杨完成签到,获得积分10
2秒前
2秒前
merlideng发布了新的文献求助10
2秒前
星点点发布了新的文献求助10
2秒前
机灵映雁完成签到,获得积分10
3秒前
学术牛马发布了新的文献求助10
3秒前
Notdodead应助聪慧的草丛采纳,获得40
4秒前
王红玉发布了新的文献求助10
4秒前
katsuras发布了新的文献求助10
5秒前
海晨完成签到,获得积分10
6秒前
想喝奶茶完成签到,获得积分10
7秒前
8秒前
思源应助忧心的不二采纳,获得10
8秒前
星辰大海应助wenwen采纳,获得10
8秒前
wmq完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
细细完成签到,获得积分10
10秒前
11秒前
月亮完成签到,获得积分10
12秒前
NexusExplorer应助katsuras采纳,获得10
12秒前
科研通AI2S应助merlideng采纳,获得10
12秒前
彭于晏应助刘思琪采纳,获得10
13秒前
仙林AK47完成签到,获得积分10
14秒前
荷月初六发布了新的文献求助20
15秒前
15秒前
材料与化工完成签到 ,获得积分10
16秒前
lls发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
发财小手完成签到,获得积分10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011199
求助须知:如何正确求助?哪些是违规求助? 3550895
关于积分的说明 11306713
捐赠科研通 3285098
什么是DOI,文献DOI怎么找? 1810962
邀请新用户注册赠送积分活动 886662
科研通“疑难数据库(出版商)”最低求助积分说明 811581