活性氧
心脏病学
医学
急性肾损伤
内科学
舒张期
心脏功能不全
生物
细胞生物学
血压
心力衰竭
作者
Xiao Han,Quan Hong,Fei Peng,Yan Zhang,Lingling Wu,Xu Wang,Ying Zheng,Xiangmei Chen
标识
DOI:10.1016/j.bbadis.2024.167184
摘要
Acute kidney injury (AKI) can cause distal cardiac dysfunction; however, the underlying mechanism is unknown. Oxidative stress is proved prominent in AKI-induced cardiac dysfunction, and a possible bridge role of oxidative-stress products in cardio-renal interaction has been reported. Therefore, this study aimed to investigate the critical role of circulating reactive oxygen species (ROS) in mediating cardiac dysfunction after bilateral renal ischemia-reperfusion injury (IRI). We observed the diastolic dysfunction in the mice following renal IRI, accompanied by reduced ATP levels, oxidative stress, and branched-chain amino acids (BCAA) accumulation in the heart. Notably, ROS levels showed a sequential increase in the kidneys, circulation, and heart. Treatment with tempol, an ROS scavenger, significantly restored cardiac diastolic function in the renal IRI mice, corroborating the bridge role of circulating ROS. Accumulating evidence has identified oxidative stress as upstream of Mst1/Hippo in cardiac injury, which could regulate the expression of downstream genes related to mitochondrial quality control, leading to lower ATP, higher ROS and metabolic disorder. To verify this, we examined the activation of the Mst1/Hippo pathway in the heart of renal IRI mice, which was alleviated by tempol treatment as well. In vitro, analysis revealed that Mst1-knockdown cardiomyocytes could be activated by hydrogen peroxide (H2O2). Analysis of Mst1-overexpression cardiomyocytes confirmed the critical role of the Mst1/Hippo pathway in oxidative stress and BCAA dysmetabolism. Therefore, our results indicated that circulating ROS following renal IRI activates the Mst1/Hippo pathway of myocardium, leading to cardiac oxidative stress and diastolic dysfunction. This finding provides new insights for the clinical exploration of improved treatment options for cardiorenal syndrome.
科研通智能强力驱动
Strongly Powered by AbleSci AI