Healthcare insurance fraud detection using data mining

健康信息学 医疗保健 数据科学 计算机科学 数据挖掘 业务 经济增长 经济
作者
Zain Hamid,Fatima Khalique,Saba Mahmood,Ali Daud,Amal Bukhari,Bader Alshemaimri
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1) 被引量:3
标识
DOI:10.1186/s12911-024-02512-4
摘要

Abstract Background Healthcare programs and insurance initiatives play a crucial role in ensuring that people have access to medical care. There are many benefits of healthcare insurance programs but fraud in healthcare continues to be a significant challenge in the insurance industry. Healthcare insurance fraud detection faces challenges from evolving and sophisticated fraud schemes that adapt to detection methods. Analyzing extensive healthcare data is hindered by complexity, data quality issues, and the need for real-time detection, while privacy concerns and false positives pose additional hurdles. The lack of standardization in coding and limited resources further complicate efforts to address fraudulent activities effectively. Methodolgy In this study, a fraud detection methodology is presented that utilizes association rule mining augmented with unsupervised learning techniques to detect healthcare insurance fraud. Dataset from the Centres for Medicare and Medicaid Services (CMS) 2008-2010 DE-SynPUF is used for analysis. The proposed methodology works in two stages. First, association rule mining is used to extract frequent rules from the transactions based on patient, service and service provider features. Second, the extracted rules are passed to unsupervised classifiers, such as IF, CBLOF, ECOD, and OCSVM, to identify fraudulent activity. Results Descriptive analysis shows patterns and trends in the data revealing interesting relationship among diagnosis codes, procedure codes and the physicians. The baseline anomaly detection algorithms generated results in 902.24 seconds. Another experiment retrieved frequent rules using association rule mining with apriori algorithm combined with unsupervised techniques in 868.18 seconds. The silhouette scoring method calculated the efficacy of four different anomaly detection techniques showing CBLOF with highest score of 0.114 followed by isolation forest with the score of 0.103. The ECOD and OCSVM techniques have lower scores of 0.063 and 0.060, respectively. Conclusion The proposed methodology enhances healthcare insurance fraud detection by using association rule mining for pattern discovery and unsupervised classifiers for effective anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiejinhui完成签到,获得积分20
刚刚
thousandlong发布了新的文献求助10
刚刚
FashionBoy应助iwww采纳,获得10
刚刚
1秒前
1秒前
橙浅发布了新的文献求助10
1秒前
852应助果实采纳,获得10
1秒前
紫薯球发布了新的文献求助10
1秒前
朴子完成签到,获得积分10
3秒前
anna1992发布了新的文献求助10
3秒前
文龙发布了新的文献求助10
4秒前
呼噜完成签到,获得积分10
5秒前
bkagyin应助labxgr采纳,获得10
6秒前
虚心的芹发布了新的文献求助10
6秒前
aqua_xin完成签到,获得积分0
6秒前
科目三应助shone采纳,获得10
6秒前
豪子完成签到 ,获得积分10
6秒前
link完成签到,获得积分20
7秒前
火火完成签到,获得积分10
7秒前
狗狗发布了新的文献求助10
8秒前
猪猪hero发布了新的文献求助10
8秒前
深情安青应助淡然老头采纳,获得10
8秒前
可爱的函函应助WXG采纳,获得10
10秒前
10秒前
西红柿没错完成签到,获得积分10
10秒前
Mollyshimmer完成签到 ,获得积分10
10秒前
10秒前
KYT_XX发布了新的文献求助10
10秒前
11秒前
慕青应助可爱的菠萝采纳,获得10
11秒前
狗狗完成签到,获得积分10
12秒前
Crush发布了新的文献求助10
12秒前
13秒前
13秒前
李健的小迷弟应助郭mm采纳,获得10
14秒前
852应助郭mm采纳,获得10
14秒前
热心市民小红花应助郭mm采纳,获得10
14秒前
猪猪hero应助郭mm采纳,获得10
14秒前
科研通AI2S应助郭mm采纳,获得10
14秒前
羊羊羊完成签到,获得积分10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149