Healthcare insurance fraud detection using data mining

健康信息学 医疗保健 数据科学 计算机科学 数据挖掘 业务 经济 经济增长
作者
Zain Hamid,Fatima Khalique,Saba Mahmood,Ali Daud,Amal Bukhari,Bader Alshemaimri
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1) 被引量:3
标识
DOI:10.1186/s12911-024-02512-4
摘要

Abstract Background Healthcare programs and insurance initiatives play a crucial role in ensuring that people have access to medical care. There are many benefits of healthcare insurance programs but fraud in healthcare continues to be a significant challenge in the insurance industry. Healthcare insurance fraud detection faces challenges from evolving and sophisticated fraud schemes that adapt to detection methods. Analyzing extensive healthcare data is hindered by complexity, data quality issues, and the need for real-time detection, while privacy concerns and false positives pose additional hurdles. The lack of standardization in coding and limited resources further complicate efforts to address fraudulent activities effectively. Methodolgy In this study, a fraud detection methodology is presented that utilizes association rule mining augmented with unsupervised learning techniques to detect healthcare insurance fraud. Dataset from the Centres for Medicare and Medicaid Services (CMS) 2008-2010 DE-SynPUF is used for analysis. The proposed methodology works in two stages. First, association rule mining is used to extract frequent rules from the transactions based on patient, service and service provider features. Second, the extracted rules are passed to unsupervised classifiers, such as IF, CBLOF, ECOD, and OCSVM, to identify fraudulent activity. Results Descriptive analysis shows patterns and trends in the data revealing interesting relationship among diagnosis codes, procedure codes and the physicians. The baseline anomaly detection algorithms generated results in 902.24 seconds. Another experiment retrieved frequent rules using association rule mining with apriori algorithm combined with unsupervised techniques in 868.18 seconds. The silhouette scoring method calculated the efficacy of four different anomaly detection techniques showing CBLOF with highest score of 0.114 followed by isolation forest with the score of 0.103. The ECOD and OCSVM techniques have lower scores of 0.063 and 0.060, respectively. Conclusion The proposed methodology enhances healthcare insurance fraud detection by using association rule mining for pattern discovery and unsupervised classifiers for effective anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
划水鱼发布了新的文献求助10
2秒前
guo完成签到,获得积分10
2秒前
2秒前
热闹的橘发布了新的文献求助50
3秒前
3秒前
4秒前
杨耑耑完成签到,获得积分10
5秒前
糖醋排骨完成签到,获得积分20
7秒前
rrrr完成签到,获得积分10
8秒前
8秒前
8秒前
Easycup完成签到,获得积分10
9秒前
胥阶英完成签到,获得积分10
9秒前
IngridX完成签到 ,获得积分10
9秒前
划水鱼完成签到,获得积分10
10秒前
wanci应助佛系少女云采纳,获得10
10秒前
雪雪完成签到 ,获得积分10
10秒前
johnrambo0625完成签到,获得积分10
10秒前
我就叫渣渣辉吧完成签到,获得积分10
11秒前
Metx完成签到 ,获得积分10
11秒前
肖遥发布了新的文献求助10
12秒前
Kiki完成签到,获得积分10
13秒前
领导范儿应助Easycup采纳,获得10
13秒前
比目鱼发布了新的文献求助10
13秒前
姚姚的赵赵完成签到,获得积分10
14秒前
胥阶英发布了新的文献求助10
15秒前
彪壮的绮烟完成签到,获得积分10
16秒前
17秒前
LCW07完成签到 ,获得积分10
17秒前
格格发布了新的文献求助20
18秒前
Lyncus应助lsq采纳,获得10
18秒前
秦艽发布了新的文献求助10
18秒前
所所应助迅速小鸭子采纳,获得10
18秒前
杰瑞完成签到,获得积分10
19秒前
胡乱说兔的熊完成签到,获得积分10
20秒前
惜命如今完成签到,获得积分10
20秒前
21秒前
Wang发布了新的文献求助10
22秒前
慕青应助Kiki采纳,获得10
24秒前
王筱宁发布了新的文献求助10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295827
求助须知:如何正确求助?哪些是违规求助? 2931687
关于积分的说明 8453434
捐赠科研通 2604320
什么是DOI,文献DOI怎么找? 1421619
科研通“疑难数据库(出版商)”最低求助积分说明 661066
邀请新用户注册赠送积分活动 644023