Endometrioid Endometrial RNA Index Predicts Recurrence in Stage I Patients

阶段(地层学) 子宫内膜癌 肿瘤科 医学 索引(排版) 核糖核酸 内科学 妇科 生物 癌症 遗传学 计算机科学 基因 万维网 古生物学
作者
Corrine A. Nief,Phoebe M. Hammer,Aihui Wang,Vivek Charu,Amina Tanweer,Babak Litkouhi,Elizabeth Kidd,Andrew J. Gentles,Brooke E. Howitt
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
被引量:1
标识
DOI:10.1158/1078-0432.ccr-23-3158
摘要

Abstract Purpose: Risk prediction with genomic and transcriptomic data has the potential to improve patient outcomes by enabling clinicians to identify patients requiring adjuvant treatment approaches, while sparing low-risk patients from unnecessary interventions. Endometrioid endometrial carcinoma (EEC) is the most common cancer in women in developed countries, and rates of endometrial cancer are increasing. Experimental Design: We collected a 105-patient case-control cohort of stage I EEC comprised of 45 patients who experienced recurrence less than 6 years after excision, and 60 FIGO grade matched controls without recurrence. We first utilized two RNA based, previously validated machine learning approaches, namely EcoTyper and Complexity Index in Sarcoma (CINSARC). We developed Endometrioid Endometrial RNA Index (EERI) which uses RNA expression data from 46 genes to generate a personalized risk score for each patient. EERI was trained on our 105-patient cohort and tested on a publicly available cohort of 263 stage I EEC patients. Results: EERI was able to predict recurrences with 94% accuracy in the training set and 81% accuracy in the test set. In the test set, patients assigned as EERI high-risk were significantly more likely to experience recurrence (30%) than the EERI low-risk group (1%) with a hazard ratio of 9.9 (95% CI 4.1-23.8, P <0.001). Conclusions: Tumors with high-risk genetic features may require additional treatment or closer monitoring and are not readily identified using traditional clinicopathologic and molecular features. EERI performs with high sensitivity and modest specificity, which may benefit from further optimization and validation in larger independent cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鑫搭发布了新的文献求助10
1秒前
NexusExplorer应助优秀的莹采纳,获得10
1秒前
1秒前
zydd发布了新的文献求助10
2秒前
2秒前
hh完成签到,获得积分10
4秒前
舒适映寒发布了新的文献求助10
5秒前
7秒前
7秒前
隐形曼青应助鑫搭采纳,获得10
7秒前
8秒前
iNk应助yuan采纳,获得10
9秒前
zxw完成签到,获得积分10
13秒前
hcycola完成签到,获得积分20
13秒前
浮生发布了新的文献求助10
14秒前
TuZhuling发布了新的文献求助10
14秒前
Lucas应助典雅的荣轩采纳,获得10
14秒前
所所应助谨慎达采纳,获得10
15秒前
15秒前
15秒前
www完成签到,获得积分20
15秒前
坚强的哈密瓜完成签到,获得积分10
16秒前
ccc完成签到,获得积分10
18秒前
阿鹿462发布了新的文献求助10
18秒前
Orange应助科研通管家采纳,获得50
18秒前
情怀应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得20
18秒前
Ava应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
旧事与九月发布了新的文献求助200
18秒前
完美的嵩发布了新的文献求助10
18秒前
烟花应助科研通管家采纳,获得10
19秒前
kk应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
jw完成签到,获得积分10
19秒前
TuZhuling完成签到,获得积分10
22秒前
26秒前
27秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072136
求助须知:如何正确求助?哪些是违规求助? 2726009
关于积分的说明 7492096
捐赠科研通 2373524
什么是DOI,文献DOI怎么找? 1258598
科研通“疑难数据库(出版商)”最低求助积分说明 610301
版权声明 596945