An Improved Hidden Markov Model with Magnetic Barkhausen Noise and Optimized Gaussian Mixture Feature for Fatigue Prediction

巴克豪森效应 隐马尔可夫模型 特征(语言学) 模式识别(心理学) 噪音(视频) 高斯分布 语音识别 计算机科学 人工智能 统计物理学 材料科学 物理 磁场 磁化 语言学 哲学 量子力学 图像(数学)
作者
Xiang Li,Wei Guo,Xin Deng,Yitong Guo,Yang Zheng,Jinjie Zhou,Peng Zhan
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad44c3
摘要

Abstract Evaluating fatigue states of metallic materials is essential for predicting their failures and ensuring structural safety. Magnetic Barkhausen noise (MBN) analysis, a non-destructive testing method, provides efficient and reliable methods for identifying and categorising material parameters such as hardness and residual stresses. To establish a quantitative relationship between MBN signals and fatigue states, an improved hidden Markov model (HMM) is proposed based on optimised Gaussian mixture features (GMFs) and the Kullback-Leibler (KL) divergence measure for fatigue prediction. The MBN-GMFs replicate the probability characteristics of MBN signals and track the fatigue degradation trend throughout the fatigue life; thus, they are superior to some widely used statistical features. A Gaussian component optimisation (GCO) algorithm is proposed to automatically adjust the appropriate number of components in the Gaussian mixture model (GMM) and enhance the representation of MBN-GMFs. Then, the KL divergence is introduced to quantify the similarity and accurately classify the degree of MBN-GMF migration. The HMM is constructed to obtain the probability transfer relationship between the observations and states and obtain accurate fatigue predictions. Experiments on two 20R metallic materials at three excitation frequencies are conducted to collect the MBN signals. The experimental results and comparisons indicate that the proposed HMM can accurately predict fatigue states and provide a practical and robust analysis tool for MBN-based fatigue predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dalin完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
Dr.L完成签到,获得积分10
5秒前
拉拉完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
CarolineSH完成签到 ,获得积分10
6秒前
SciGPT应助王翔采纳,获得10
6秒前
hd完成签到,获得积分10
6秒前
wansida完成签到,获得积分10
8秒前
浮游应助kukuku采纳,获得10
9秒前
xumengsuo发布了新的文献求助10
9秒前
乐乐发布了新的文献求助10
9秒前
天天快乐应助3100采纳,获得10
10秒前
czq发布了新的文献求助10
10秒前
10秒前
11秒前
陈玉发布了新的文献求助10
12秒前
12秒前
程雯慧发布了新的文献求助10
13秒前
xh发布了新的文献求助10
13秒前
14秒前
16秒前
云望发布了新的文献求助10
16秒前
16秒前
WN发布了新的文献求助10
19秒前
19秒前
llll完成签到 ,获得积分0
20秒前
21秒前
21秒前
拉拉关注了科研通微信公众号
23秒前
王翔发布了新的文献求助10
23秒前
充电宝应助可靠冥幽采纳,获得10
24秒前
李健应助云望采纳,获得10
24秒前
情怀应助xumengsuo采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061232
求助须知:如何正确求助?哪些是违规求助? 4285332
关于积分的说明 13354142
捐赠科研通 4103141
什么是DOI,文献DOI怎么找? 2246531
邀请新用户注册赠送积分活动 1252193
关于科研通互助平台的介绍 1183040