已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI data consistency guided conditional diffusion probabilistic model for MR imaging acceleration

一致性(知识库) 概率逻辑 磁共振成像 计算机科学 采样(信号处理) 磁共振弥散成像 人工智能 数据一致性 实时核磁共振成像 图像质量 计算机视觉 图像(数学) 放射科 医学 滤波器(信号处理) 操作系统
作者
Mojtaba Safari,Xiaofeng Yang,Ali Fatemi
标识
DOI:10.1117/12.3002863
摘要

The long acquisition time required for high-resolution Magnetic Resonance Imaging (MRI) leads to patient discomfort, increased likelihood of voluntary and involuntary movements, and reduced throughput in imaging centers. This study proposed a novel method that leverages MRI physics to incorporate data consistency during the training of a conditional diffusion probabilistic model, which we refer to as the data consistency-guided conditional diffusion probabilistic model (DC-CDPM). This model aimed to reconstruct high-resolution contrast enhanced T1W MRI from partially sampled data. The DC-CDPM utilized the conjugate gradient optimization method to minimize data consistency loss between reconstructed MRI images and fully sampled unknown MRI images. Further, a diffusion probabilistic model conditioned on the optimization's output was trained to reconstruct the fully sampled MRI. The publicly available dataset of 230 post-surgery patients with different brain tumors was used in this study to train the model. The equidistant under-sampling method was implemented to simulate four different under-sampling levels. The qualitative and quantitative comparisons were done between DC-CDPM and an exactly similar CDPM model except not conditioned on the optimization output. Qualitatively, the DC-CDPM could reconstruct fully sampled images compared with CDPM. Furthermore, the image profile along a tumor indicated better performance of DC-CDPM. Quantitatively, the DC-CDPM outperformed CDPM in four out of six quantitative metrics and had a consistent performance throughout the different under-sampling levels. Our method could allow us to perform brain imaging with substantially lower acquisition time while achieving similar image quality of fully sampled MRI images with a long acquisition time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好冥王星完成签到 ,获得积分10
2秒前
3秒前
4秒前
两张发布了新的文献求助10
5秒前
想毕业的小橙子完成签到,获得积分10
5秒前
打打应助AnyYuan采纳,获得10
6秒前
8秒前
黎娅完成签到 ,获得积分10
8秒前
无极微光应助louxiaohan采纳,获得20
9秒前
赘婿应助雷雷采纳,获得10
9秒前
DrSong完成签到,获得积分10
11秒前
13秒前
13秒前
旺旺大李包完成签到,获得积分10
13秒前
坏坏的快乐完成签到,获得积分10
14秒前
阿黎发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
酷酷海豚完成签到,获得积分10
19秒前
Jessica完成签到,获得积分10
19秒前
20秒前
疯狂的曼香完成签到,获得积分10
20秒前
wenxy发布了新的文献求助10
25秒前
dingm2发布了新的文献求助30
25秒前
阿黎完成签到,获得积分10
26秒前
冰西瓜完成签到 ,获得积分0
26秒前
完美世界应助冷酷的如松采纳,获得10
28秒前
asd1576562308完成签到 ,获得积分10
29秒前
sxb10101完成签到 ,获得积分0
29秒前
31秒前
mm发布了新的文献求助10
34秒前
35秒前
点点完成签到,获得积分10
36秒前
虚心的幻梅完成签到 ,获得积分10
36秒前
37秒前
nc完成签到 ,获得积分10
37秒前
37秒前
从烷烃开始重新生长完成签到,获得积分10
39秒前
隐形曼青应助sujinyu采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787903
求助须知:如何正确求助?哪些是违规求助? 5702431
关于积分的说明 15473009
捐赠科研通 4916130
什么是DOI,文献DOI怎么找? 2646159
邀请新用户注册赠送积分活动 1593838
关于科研通互助平台的介绍 1548165