MRI data consistency guided conditional diffusion probabilistic model for MR imaging acceleration

一致性(知识库) 概率逻辑 磁共振成像 计算机科学 采样(信号处理) 磁共振弥散成像 人工智能 数据一致性 实时核磁共振成像 图像质量 计算机视觉 图像(数学) 放射科 医学 滤波器(信号处理) 操作系统
作者
Mojtaba Safari,Xiaofeng Yang,Ali Fatemi
标识
DOI:10.1117/12.3002863
摘要

The long acquisition time required for high-resolution Magnetic Resonance Imaging (MRI) leads to patient discomfort, increased likelihood of voluntary and involuntary movements, and reduced throughput in imaging centers. This study proposed a novel method that leverages MRI physics to incorporate data consistency during the training of a conditional diffusion probabilistic model, which we refer to as the data consistency-guided conditional diffusion probabilistic model (DC-CDPM). This model aimed to reconstruct high-resolution contrast enhanced T1W MRI from partially sampled data. The DC-CDPM utilized the conjugate gradient optimization method to minimize data consistency loss between reconstructed MRI images and fully sampled unknown MRI images. Further, a diffusion probabilistic model conditioned on the optimization's output was trained to reconstruct the fully sampled MRI. The publicly available dataset of 230 post-surgery patients with different brain tumors was used in this study to train the model. The equidistant under-sampling method was implemented to simulate four different under-sampling levels. The qualitative and quantitative comparisons were done between DC-CDPM and an exactly similar CDPM model except not conditioned on the optimization output. Qualitatively, the DC-CDPM could reconstruct fully sampled images compared with CDPM. Furthermore, the image profile along a tumor indicated better performance of DC-CDPM. Quantitatively, the DC-CDPM outperformed CDPM in four out of six quantitative metrics and had a consistent performance throughout the different under-sampling levels. Our method could allow us to perform brain imaging with substantially lower acquisition time while achieving similar image quality of fully sampled MRI images with a long acquisition time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南淮完成签到,获得积分10
刚刚
sususu完成签到,获得积分20
刚刚
刚刚
沉静的悒发布了新的文献求助20
刚刚
大模型应助小林不熬夜采纳,获得10
1秒前
林林完成签到,获得积分10
2秒前
2秒前
3秒前
lqy关注了科研通微信公众号
3秒前
Plusonezzz完成签到,获得积分20
3秒前
Lucas应助Brief采纳,获得10
3秒前
4秒前
4秒前
5秒前
fei应助自然蘑菇采纳,获得50
5秒前
daigang发布了新的文献求助30
5秒前
dxm发布了新的文献求助10
5秒前
甜甜完成签到 ,获得积分10
7秒前
blessing完成签到,获得积分20
7秒前
wkjfh举报火星上的电话求助涉嫌违规
7秒前
8秒前
8秒前
123发布了新的文献求助10
9秒前
yuki发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
帅气yumin发布了新的文献求助10
12秒前
快乐的花果山完成签到,获得积分0
14秒前
孤独中道发布了新的文献求助10
14秒前
自然蘑菇给自然蘑菇的求助进行了留言
14秒前
慎独579发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
认真灯泡发布了新的文献求助10
16秒前
闫什发布了新的文献求助10
17秒前
17秒前
医学牲纽蚂完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382