MRI data consistency guided conditional diffusion probabilistic model for MR imaging acceleration

一致性(知识库) 概率逻辑 磁共振成像 计算机科学 采样(信号处理) 磁共振弥散成像 人工智能 数据一致性 实时核磁共振成像 图像质量 计算机视觉 图像(数学) 放射科 医学 滤波器(信号处理) 操作系统
作者
Mojtaba Safari,Xiaofeng Yang,Ali Fatemi
标识
DOI:10.1117/12.3002863
摘要

The long acquisition time required for high-resolution Magnetic Resonance Imaging (MRI) leads to patient discomfort, increased likelihood of voluntary and involuntary movements, and reduced throughput in imaging centers. This study proposed a novel method that leverages MRI physics to incorporate data consistency during the training of a conditional diffusion probabilistic model, which we refer to as the data consistency-guided conditional diffusion probabilistic model (DC-CDPM). This model aimed to reconstruct high-resolution contrast enhanced T1W MRI from partially sampled data. The DC-CDPM utilized the conjugate gradient optimization method to minimize data consistency loss between reconstructed MRI images and fully sampled unknown MRI images. Further, a diffusion probabilistic model conditioned on the optimization's output was trained to reconstruct the fully sampled MRI. The publicly available dataset of 230 post-surgery patients with different brain tumors was used in this study to train the model. The equidistant under-sampling method was implemented to simulate four different under-sampling levels. The qualitative and quantitative comparisons were done between DC-CDPM and an exactly similar CDPM model except not conditioned on the optimization output. Qualitatively, the DC-CDPM could reconstruct fully sampled images compared with CDPM. Furthermore, the image profile along a tumor indicated better performance of DC-CDPM. Quantitatively, the DC-CDPM outperformed CDPM in four out of six quantitative metrics and had a consistent performance throughout the different under-sampling levels. Our method could allow us to perform brain imaging with substantially lower acquisition time while achieving similar image quality of fully sampled MRI images with a long acquisition time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助喜悦静枫采纳,获得10
1秒前
huo应助小巧忆翠采纳,获得10
1秒前
UU发布了新的文献求助10
2秒前
阿湛完成签到,获得积分10
2秒前
maox1aoxin应助古的古的采纳,获得50
4秒前
4秒前
Lucas应助ava采纳,获得10
4秒前
5秒前
一只猫猫头完成签到,获得积分10
6秒前
6秒前
艺阳发布了新的文献求助10
6秒前
6秒前
科目三应助包容的映天采纳,获得10
7秒前
残影酱完成签到,获得积分10
9秒前
活在当下完成签到,获得积分10
9秒前
wysky37发布了新的文献求助10
9秒前
pipi发布了新的文献求助10
10秒前
不安的采白完成签到,获得积分10
10秒前
10秒前
无异常完成签到,获得积分10
11秒前
阿嘎普莱特完成签到,获得积分10
11秒前
12秒前
桥琼侨完成签到,获得积分20
14秒前
无名老大应助rachel-yue采纳,获得50
15秒前
drake完成签到,获得积分10
15秒前
ZZH完成签到,获得积分10
15秒前
ava发布了新的文献求助10
15秒前
崔大胖发布了新的文献求助10
16秒前
高贵的洋葱完成签到,获得积分10
16秒前
18秒前
无名老大应助Stageruner采纳,获得30
19秒前
喜悦静枫发布了新的文献求助10
19秒前
斯文败类应助win采纳,获得10
19秒前
20秒前
20秒前
康康星完成签到,获得积分10
21秒前
21秒前
22秒前
桥琼侨关注了科研通微信公众号
22秒前
隐形曼青应助伈X采纳,获得10
22秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328053
求助须知:如何正确求助?哪些是违规求助? 2958192
关于积分的说明 8589449
捐赠科研通 2636443
什么是DOI,文献DOI怎么找? 1442995
科研通“疑难数据库(出版商)”最低求助积分说明 668470
邀请新用户注册赠送积分活动 655696