MRI data consistency guided conditional diffusion probabilistic model for MR imaging acceleration

一致性(知识库) 概率逻辑 磁共振成像 计算机科学 采样(信号处理) 磁共振弥散成像 人工智能 数据一致性 实时核磁共振成像 图像质量 计算机视觉 图像(数学) 放射科 医学 滤波器(信号处理) 操作系统
作者
Mojtaba Safari,Xiaofeng Yang,Ali Fatemi
标识
DOI:10.1117/12.3002863
摘要

The long acquisition time required for high-resolution Magnetic Resonance Imaging (MRI) leads to patient discomfort, increased likelihood of voluntary and involuntary movements, and reduced throughput in imaging centers. This study proposed a novel method that leverages MRI physics to incorporate data consistency during the training of a conditional diffusion probabilistic model, which we refer to as the data consistency-guided conditional diffusion probabilistic model (DC-CDPM). This model aimed to reconstruct high-resolution contrast enhanced T1W MRI from partially sampled data. The DC-CDPM utilized the conjugate gradient optimization method to minimize data consistency loss between reconstructed MRI images and fully sampled unknown MRI images. Further, a diffusion probabilistic model conditioned on the optimization's output was trained to reconstruct the fully sampled MRI. The publicly available dataset of 230 post-surgery patients with different brain tumors was used in this study to train the model. The equidistant under-sampling method was implemented to simulate four different under-sampling levels. The qualitative and quantitative comparisons were done between DC-CDPM and an exactly similar CDPM model except not conditioned on the optimization output. Qualitatively, the DC-CDPM could reconstruct fully sampled images compared with CDPM. Furthermore, the image profile along a tumor indicated better performance of DC-CDPM. Quantitatively, the DC-CDPM outperformed CDPM in four out of six quantitative metrics and had a consistent performance throughout the different under-sampling levels. Our method could allow us to perform brain imaging with substantially lower acquisition time while achieving similar image quality of fully sampled MRI images with a long acquisition time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
润润轩轩发布了新的文献求助10
刚刚
lichaoyes发布了新的文献求助10
1秒前
王王的狗子完成签到 ,获得积分10
1秒前
zjuroc发布了新的文献求助20
1秒前
2秒前
浅笑发布了新的文献求助10
2秒前
文艺明杰发布了新的文献求助10
2秒前
2秒前
炙热冰夏发布了新的文献求助10
2秒前
2秒前
大意的青槐完成签到,获得积分10
3秒前
3秒前
nalan完成签到,获得积分10
3秒前
NN应助影子采纳,获得10
3秒前
天真思雁完成签到 ,获得积分10
4秒前
在水一方应助火星上白羊采纳,获得10
4秒前
小吕完成签到,获得积分10
5秒前
5秒前
wanci应助科研CY采纳,获得10
5秒前
Lxxixixi完成签到,获得积分10
5秒前
6秒前
linktheboy完成签到,获得积分10
6秒前
VVhahaha发布了新的文献求助10
6秒前
可靠从云完成签到 ,获得积分10
7秒前
7秒前
慕青应助通~采纳,获得10
7秒前
小二郎应助勤奋的蜗牛采纳,获得10
7秒前
小郭同学发布了新的文献求助10
8秒前
8秒前
俎树同发布了新的文献求助10
8秒前
nalan发布了新的文献求助10
8秒前
lichaoyes完成签到,获得积分10
9秒前
fanfanzzz发布了新的文献求助30
9秒前
chengche完成签到,获得积分10
9秒前
windyhill完成签到,获得积分10
10秒前
小二郎应助岁月轮回采纳,获得10
11秒前
11秒前
浅笑完成签到,获得积分10
12秒前
12秒前
希望天下0贩的0应助hohokuz采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762