Long-cycle-life Li2MnO3 thin-film cathode enabled by all-solid-state battery configuration

阴极 固态 电池(电) 材料科学 薄膜 化学工程 电气工程 工程物理 光电子学 纳米技术 工程类 物理 热力学 功率(物理)
作者
Qichanghao Li,Wei Liu,Jinshi Wang,Qiuying Xia,Hui Xia
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:602: 234371-234371
标识
DOI:10.1016/j.jpowsour.2024.234371
摘要

Li2MnO3 (LMO) is a key component in lithium-rich manganese-based oxides (LMROs) and has attracted great attention as a cathode for lithium-ion batteries (LIBs) due to its high theoretical capacity and cost-effectiveness. However, its severe capacity fading and discharge voltage decay during prolonged cycling greatly hinders its applications. In this study, an LMO film is prepared, followed by the fabrication and investigation of an LMO/LiPON/Li all-solid-state thin film lithium battery (LMO-TFLB). The results show that although the LiPON electrolyte deposition results in the formation of a disordered interface layer derived from the LMO layer, an LMO/LiPON interface with small interfacial resistance and good structural stability during cycling is obtained, allowing fast Li+ diffusion across the interface. Furthermore, in contrast to the half cell that uses liquid electrolyte (LMO-LIB), the LiPON electrolyte in the LMO-TFLB significantly aids in impeding the Mn dissolution to prevent active material loss. More importantly, although a structural transformation from a layered LMO phase to a spinel-like phase occurs in the cathode of the LMO-TFLB during cycling, the transformed spinel-like phase with a higher crystallinity than that in the LMO-LIB facilitates fast Li+ and electron transport to improve the LMO-TFLB's capacity. Consequently, the LMO-TFLB exhibits a long cycle life without any capacity loss after 1000 cycles, which outperforms that of the LMO-LIB (20% capacity retention after 450 cycles). This work demonstrates that all-solid-state battery configuration is highly promising for unlocking the full potential of LMROs cathode materials for LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助w小主采纳,获得10
1秒前
2秒前
Hhh发布了新的文献求助10
3秒前
麦苗果果完成签到,获得积分10
3秒前
杳鸢应助和谐的果汁采纳,获得30
4秒前
123发布了新的文献求助10
5秒前
could完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
良辰应助科研通管家采纳,获得10
7秒前
爱静静应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得200
7秒前
爱静静应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
Magali应助科研通管家采纳,获得30
7秒前
华仔应助tianguoheng采纳,获得30
7秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
爱静静应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
脑洞疼应助结实小蘑菇采纳,获得10
8秒前
8秒前
8秒前
222完成签到,获得积分20
9秒前
9秒前
传奇3应助冷艳灵萱采纳,获得10
9秒前
啊哈哈哈发布了新的文献求助10
10秒前
10秒前
BFQQQQ发布了新的文献求助10
11秒前
CodeCraft应助达雨采纳,获得10
11秒前
guang完成签到,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734