Gender Classification Based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images in the IoT Environment

计算机科学 指纹(计算) 人工智能 离散余弦变换 特征提取 模式识别(心理学) 指纹识别 频域 背景(考古学) 标识符 深度学习 生物识别 计算机视觉 图像(数学) 古生物学 生物 程序设计语言
作者
Lingzhen Kong,Kangkang Liu,Xiyuan Hu,Ning Zhang,Lianyong Qi,Xiangrui Li,Xiaokang Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25731-25743 被引量:2
标识
DOI:10.1109/jiot.2024.3381428
摘要

In the rapidly evolving landscape of the Internet of Things (IoT), concerns about privacy and security have become significant as interconnected devices communicate and collaborate. Fingerprints, serving as unique biometric identifiers, play a crucial role in the authentication and identification processes within this interconnected and exchanged network. However, attention is often directed towards the disclosure of visible fingerprints, overlooking latent fingerprints. This is primarily due to the challenges involved in extracting latent fingerprints, especially those remaining on the adhesive side of tape. Traditional methods physically/chemically peel tape to extract these fingerprints, but cause irreversible damage to the tape, hindering accurate fingerprint extraction. In this context, our investigation reveals that Optical Coherence Tomography (OCT) technology allows for the extraction of high-quality OCT fingerprint images from the adhesive side of tape, yielding precise fingerprint recognition and gender classification results. Concretely, we build a novel type of robotic-arm spectral-domain OCT (SD-OCT), which is software-controlled for the movement of the sample arm, making sample scanning more flexible and efficient. Furthermore, we utilize a deep learning network to perform representation learning on OCT fingerprints for the purpose of gender classification. In the first branch, we input OCT fingerprints into an EfficientNet-B3 network to learn their spatial domain features. Simultaneously, in the second branch, we design a network that utilizes Discrete Cosine Transform (DCT) to extract frequency domain features from OCT fingerprints. Ultimately, we integrate the spatial and frequency domain features extracted from OCT fingerprint images to generate comprehensive features. Therefore, in this paper, we introduce a novel Gender Classification approach based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images (named GenClassOCT-SF). The GenClassOCT-SF involves a robotic-arm SD-OCT system for superior-quality fingerprints acquisition and a deep learning network for spatial and frequency domain feature extraction. The fusion of these features enables highly accurate gender classification. Finally, we conduct gender classification experiments on the collected OCT fingerprint dataset to demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俗人完成签到,获得积分10
1秒前
Hesper发布了新的文献求助30
1秒前
沉默小天鹅应助李金文采纳,获得10
1秒前
2秒前
从容飞烟完成签到,获得积分10
2秒前
共享精神应助夏虫采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
斌帥发布了新的文献求助10
3秒前
zhiguoxin完成签到 ,获得积分10
4秒前
肥小耗发布了新的文献求助10
4秒前
4秒前
4秒前
kevindm完成签到,获得积分10
5秒前
lili发布了新的文献求助10
5秒前
乐乐应助平常无颜采纳,获得10
6秒前
科研通AI6应助冷艳的钥匙采纳,获得10
6秒前
7秒前
隐形曼青应助Jiayi采纳,获得10
7秒前
eeush发布了新的文献求助10
7秒前
zz发布了新的文献求助10
7秒前
zxe发布了新的文献求助30
7秒前
Mingda发布了新的文献求助10
7秒前
8秒前
盛yyyy完成签到,获得积分10
8秒前
9秒前
汉堡包应助lalala采纳,获得10
9秒前
10秒前
科研通AI6应助易辙采纳,获得10
10秒前
11秒前
www发布了新的文献求助10
11秒前
11秒前
哈哈哈完成签到 ,获得积分20
11秒前
科研通AI2S应助李金文采纳,获得10
11秒前
黄黄发布了新的文献求助10
12秒前
keanu发布了新的文献求助20
12秒前
12秒前
辛勤的乐荷完成签到,获得积分10
13秒前
斯文的元柏完成签到,获得积分20
14秒前
14秒前
科研通AI2S应助靓丽的硬币采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577394
求助须知:如何正确求助?哪些是违规求助? 3996655
关于积分的说明 12373185
捐赠科研通 3670647
什么是DOI,文献DOI怎么找? 2022943
邀请新用户注册赠送积分活动 1057104
科研通“疑难数据库(出版商)”最低求助积分说明 944067