Gender Classification Based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images in the IoT Environment

计算机科学 指纹(计算) 人工智能 离散余弦变换 特征提取 模式识别(心理学) 指纹识别 频域 背景(考古学) 标识符 深度学习 生物识别 计算机视觉 图像(数学) 古生物学 生物 程序设计语言
作者
Lingzhen Kong,Kangkang Liu,Xiyuan Hu,Ning Zhang,Lianyong Qi,Xiangrui Li,Xiaokang Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25731-25743 被引量:2
标识
DOI:10.1109/jiot.2024.3381428
摘要

In the rapidly evolving landscape of the Internet of Things (IoT), concerns about privacy and security have become significant as interconnected devices communicate and collaborate. Fingerprints, serving as unique biometric identifiers, play a crucial role in the authentication and identification processes within this interconnected and exchanged network. However, attention is often directed towards the disclosure of visible fingerprints, overlooking latent fingerprints. This is primarily due to the challenges involved in extracting latent fingerprints, especially those remaining on the adhesive side of tape. Traditional methods physically/chemically peel tape to extract these fingerprints, but cause irreversible damage to the tape, hindering accurate fingerprint extraction. In this context, our investigation reveals that Optical Coherence Tomography (OCT) technology allows for the extraction of high-quality OCT fingerprint images from the adhesive side of tape, yielding precise fingerprint recognition and gender classification results. Concretely, we build a novel type of robotic-arm spectral-domain OCT (SD-OCT), which is software-controlled for the movement of the sample arm, making sample scanning more flexible and efficient. Furthermore, we utilize a deep learning network to perform representation learning on OCT fingerprints for the purpose of gender classification. In the first branch, we input OCT fingerprints into an EfficientNet-B3 network to learn their spatial domain features. Simultaneously, in the second branch, we design a network that utilizes Discrete Cosine Transform (DCT) to extract frequency domain features from OCT fingerprints. Ultimately, we integrate the spatial and frequency domain features extracted from OCT fingerprint images to generate comprehensive features. Therefore, in this paper, we introduce a novel Gender Classification approach based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images (named GenClassOCT-SF). The GenClassOCT-SF involves a robotic-arm SD-OCT system for superior-quality fingerprints acquisition and a deep learning network for spatial and frequency domain feature extraction. The fusion of these features enables highly accurate gender classification. Finally, we conduct gender classification experiments on the collected OCT fingerprint dataset to demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣之槐发布了新的文献求助10
刚刚
刚刚
刚刚
超帅可冥发布了新的文献求助10
1秒前
Yyyy发布了新的文献求助10
1秒前
czz发布了新的文献求助30
1秒前
2秒前
2秒前
贺光萌完成签到 ,获得积分10
2秒前
3秒前
sunsunsun发布了新的文献求助10
3秒前
打打应助huhu采纳,获得10
3秒前
augety发布了新的文献求助10
4秒前
JamesPei应助dd采纳,获得10
4秒前
吉安娜完成签到,获得积分10
4秒前
4秒前
无花果应助shxygpz采纳,获得10
4秒前
Nancy完成签到,获得积分10
4秒前
惜昭发布了新的文献求助10
4秒前
cuicy发布了新的文献求助10
5秒前
5秒前
双双完成签到 ,获得积分10
7秒前
Nancy发布了新的文献求助10
8秒前
8秒前
斯人完成签到 ,获得积分10
8秒前
8R60d8应助czz采纳,获得10
9秒前
大模型应助ljy1111采纳,获得10
9秒前
西海焖面发布了新的文献求助10
9秒前
qkl-zyl完成签到 ,获得积分10
10秒前
10秒前
冷静导师发布了新的文献求助10
10秒前
七块钱发布了新的文献求助10
11秒前
汉堡包应助小碗熊采纳,获得10
12秒前
Godyo发布了新的文献求助10
13秒前
13秒前
FashionBoy应助NoMi采纳,获得10
13秒前
SpONGeBOb完成签到 ,获得积分10
14秒前
明亮含卉完成签到,获得积分10
15秒前
硕小牛完成签到,获得积分10
15秒前
Yyyy完成签到,获得积分10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443078
求助须知:如何正确求助?哪些是违规求助? 4553025
关于积分的说明 14240439
捐赠科研通 4474583
什么是DOI,文献DOI怎么找? 2452036
邀请新用户注册赠送积分活动 1442988
关于科研通互助平台的介绍 1418689