亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gender Classification Based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images in the IoT Environment

计算机科学 指纹(计算) 人工智能 离散余弦变换 特征提取 模式识别(心理学) 指纹识别 频域 背景(考古学) 标识符 深度学习 生物识别 计算机视觉 图像(数学) 古生物学 生物 程序设计语言
作者
Lingzhen Kong,Kangkang Liu,Xiyuan Hu,Ning Zhang,Lianyong Qi,Xiangrui Li,Xiaokang Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25731-25743 被引量:2
标识
DOI:10.1109/jiot.2024.3381428
摘要

In the rapidly evolving landscape of the Internet of Things (IoT), concerns about privacy and security have become significant as interconnected devices communicate and collaborate. Fingerprints, serving as unique biometric identifiers, play a crucial role in the authentication and identification processes within this interconnected and exchanged network. However, attention is often directed towards the disclosure of visible fingerprints, overlooking latent fingerprints. This is primarily due to the challenges involved in extracting latent fingerprints, especially those remaining on the adhesive side of tape. Traditional methods physically/chemically peel tape to extract these fingerprints, but cause irreversible damage to the tape, hindering accurate fingerprint extraction. In this context, our investigation reveals that Optical Coherence Tomography (OCT) technology allows for the extraction of high-quality OCT fingerprint images from the adhesive side of tape, yielding precise fingerprint recognition and gender classification results. Concretely, we build a novel type of robotic-arm spectral-domain OCT (SD-OCT), which is software-controlled for the movement of the sample arm, making sample scanning more flexible and efficient. Furthermore, we utilize a deep learning network to perform representation learning on OCT fingerprints for the purpose of gender classification. In the first branch, we input OCT fingerprints into an EfficientNet-B3 network to learn their spatial domain features. Simultaneously, in the second branch, we design a network that utilizes Discrete Cosine Transform (DCT) to extract frequency domain features from OCT fingerprints. Ultimately, we integrate the spatial and frequency domain features extracted from OCT fingerprint images to generate comprehensive features. Therefore, in this paper, we introduce a novel Gender Classification approach based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images (named GenClassOCT-SF). The GenClassOCT-SF involves a robotic-arm SD-OCT system for superior-quality fingerprints acquisition and a deep learning network for spatial and frequency domain feature extraction. The fusion of these features enables highly accurate gender classification. Finally, we conduct gender classification experiments on the collected OCT fingerprint dataset to demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
HaonanZhang发布了新的文献求助10
4秒前
mmyhn发布了新的文献求助10
4秒前
9秒前
11秒前
纪言七许完成签到 ,获得积分10
12秒前
开朗白山完成签到,获得积分10
14秒前
花花完成签到,获得积分10
15秒前
17秒前
酷波er应助HaonanZhang采纳,获得10
28秒前
发fa完成签到 ,获得积分10
29秒前
shuiyu驳回了李健应助
40秒前
finoa完成签到,获得积分10
41秒前
小天发布了新的文献求助30
42秒前
yhtu完成签到,获得积分10
42秒前
43秒前
50秒前
51秒前
DiJia完成签到 ,获得积分10
56秒前
ll发布了新的文献求助10
57秒前
1分钟前
科研通AI6应助小天采纳,获得10
1分钟前
1分钟前
shareef发布了新的文献求助10
1分钟前
HaonanZhang发布了新的文献求助10
1分钟前
傅家庆完成签到 ,获得积分10
1分钟前
1分钟前
hhh完成签到,获得积分10
1分钟前
1分钟前
youyou完成签到,获得积分10
1分钟前
yolo完成签到 ,获得积分10
1分钟前
共享精神应助ll采纳,获得10
1分钟前
今后应助生吃水果采纳,获得30
1分钟前
完美世界应助Charlie采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535