Gender Classification Based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images in the IoT Environment

计算机科学 指纹(计算) 人工智能 离散余弦变换 特征提取 模式识别(心理学) 指纹识别 频域 背景(考古学) 标识符 深度学习 生物识别 计算机视觉 图像(数学) 古生物学 生物 程序设计语言
作者
Lingzhen Kong,Kangkang Liu,Xiyuan Hu,Ning Zhang,Lianyong Qi,Xiangrui Li,Xiaokang Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25731-25743 被引量:2
标识
DOI:10.1109/jiot.2024.3381428
摘要

In the rapidly evolving landscape of the Internet of Things (IoT), concerns about privacy and security have become significant as interconnected devices communicate and collaborate. Fingerprints, serving as unique biometric identifiers, play a crucial role in the authentication and identification processes within this interconnected and exchanged network. However, attention is often directed towards the disclosure of visible fingerprints, overlooking latent fingerprints. This is primarily due to the challenges involved in extracting latent fingerprints, especially those remaining on the adhesive side of tape. Traditional methods physically/chemically peel tape to extract these fingerprints, but cause irreversible damage to the tape, hindering accurate fingerprint extraction. In this context, our investigation reveals that Optical Coherence Tomography (OCT) technology allows for the extraction of high-quality OCT fingerprint images from the adhesive side of tape, yielding precise fingerprint recognition and gender classification results. Concretely, we build a novel type of robotic-arm spectral-domain OCT (SD-OCT), which is software-controlled for the movement of the sample arm, making sample scanning more flexible and efficient. Furthermore, we utilize a deep learning network to perform representation learning on OCT fingerprints for the purpose of gender classification. In the first branch, we input OCT fingerprints into an EfficientNet-B3 network to learn their spatial domain features. Simultaneously, in the second branch, we design a network that utilizes Discrete Cosine Transform (DCT) to extract frequency domain features from OCT fingerprints. Ultimately, we integrate the spatial and frequency domain features extracted from OCT fingerprint images to generate comprehensive features. Therefore, in this paper, we introduce a novel Gender Classification approach based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images (named GenClassOCT-SF). The GenClassOCT-SF involves a robotic-arm SD-OCT system for superior-quality fingerprints acquisition and a deep learning network for spatial and frequency domain feature extraction. The fusion of these features enables highly accurate gender classification. Finally, we conduct gender classification experiments on the collected OCT fingerprint dataset to demonstrate the effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dej发布了新的文献求助30
1秒前
2秒前
2秒前
anbiii发布了新的文献求助10
2秒前
2秒前
汉堡包应助半芹采纳,获得10
3秒前
赘婿应助zxs采纳,获得10
3秒前
充电宝应助ksoeeis采纳,获得10
3秒前
4秒前
研究牲完成签到,获得积分10
4秒前
4秒前
li完成签到,获得积分10
5秒前
xy完成签到,获得积分10
5秒前
星星气球发布了新的文献求助50
6秒前
赵赵发布了新的文献求助10
7秒前
酷波er应助anbiii采纳,获得10
7秒前
7秒前
科研通AI2S应助富贵采纳,获得10
8秒前
优秀剑愁发布了新的文献求助10
11秒前
11秒前
情怀应助Xenia采纳,获得10
12秒前
怡心亭发布了新的文献求助20
13秒前
13秒前
搜集达人应助还原苯醌采纳,获得10
13秒前
Fezz完成签到,获得积分10
13秒前
HEXIN发布了新的文献求助20
13秒前
14秒前
苹果易真发布了新的文献求助10
14秒前
LLJJO完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
鲤鱼灵阳发布了新的文献求助10
16秒前
科研公主完成签到,获得积分10
17秒前
17秒前
小碗完成签到 ,获得积分10
17秒前
顾矜应助星星气球采纳,获得50
18秒前
叶长亭完成签到,获得积分10
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721