Gender Classification Based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images in the IoT Environment

计算机科学 指纹(计算) 人工智能 离散余弦变换 特征提取 模式识别(心理学) 指纹识别 频域 背景(考古学) 标识符 深度学习 生物识别 计算机视觉 图像(数学) 古生物学 生物 程序设计语言
作者
Lingzhen Kong,Kangkang Liu,Xiyuan Hu,Ning Zhang,Lianyong Qi,Xiangrui Li,Xiaokang Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25731-25743 被引量:2
标识
DOI:10.1109/jiot.2024.3381428
摘要

In the rapidly evolving landscape of the Internet of Things (IoT), concerns about privacy and security have become significant as interconnected devices communicate and collaborate. Fingerprints, serving as unique biometric identifiers, play a crucial role in the authentication and identification processes within this interconnected and exchanged network. However, attention is often directed towards the disclosure of visible fingerprints, overlooking latent fingerprints. This is primarily due to the challenges involved in extracting latent fingerprints, especially those remaining on the adhesive side of tape. Traditional methods physically/chemically peel tape to extract these fingerprints, but cause irreversible damage to the tape, hindering accurate fingerprint extraction. In this context, our investigation reveals that Optical Coherence Tomography (OCT) technology allows for the extraction of high-quality OCT fingerprint images from the adhesive side of tape, yielding precise fingerprint recognition and gender classification results. Concretely, we build a novel type of robotic-arm spectral-domain OCT (SD-OCT), which is software-controlled for the movement of the sample arm, making sample scanning more flexible and efficient. Furthermore, we utilize a deep learning network to perform representation learning on OCT fingerprints for the purpose of gender classification. In the first branch, we input OCT fingerprints into an EfficientNet-B3 network to learn their spatial domain features. Simultaneously, in the second branch, we design a network that utilizes Discrete Cosine Transform (DCT) to extract frequency domain features from OCT fingerprints. Ultimately, we integrate the spatial and frequency domain features extracted from OCT fingerprint images to generate comprehensive features. Therefore, in this paper, we introduce a novel Gender Classification approach based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images (named GenClassOCT-SF). The GenClassOCT-SF involves a robotic-arm SD-OCT system for superior-quality fingerprints acquisition and a deep learning network for spatial and frequency domain feature extraction. The fusion of these features enables highly accurate gender classification. Finally, we conduct gender classification experiments on the collected OCT fingerprint dataset to demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ganerwahaha完成签到,获得积分10
刚刚
英姑应助11采纳,获得30
刚刚
刚刚
Xng发布了新的文献求助10
1秒前
Codd完成签到,获得积分10
1秒前
共享精神应助Daniel采纳,获得200
1秒前
慕青应助温柔的海安采纳,获得10
2秒前
霸气石头发布了新的文献求助10
3秒前
5秒前
6秒前
7秒前
支初晴完成签到 ,获得积分10
7秒前
9秒前
任性冰巧发布了新的文献求助20
10秒前
锦鲤完成签到 ,获得积分10
11秒前
可爱的函函应助leeyc采纳,获得10
11秒前
11秒前
能干的邹完成签到,获得积分10
12秒前
hanzhiyuxing完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
等待的谷波完成签到 ,获得积分10
15秒前
15秒前
nn发布了新的文献求助10
16秒前
16秒前
大模型应助梁世秀采纳,获得10
17秒前
17秒前
17秒前
诗篇发布了新的文献求助10
19秒前
华仔应助moon采纳,获得10
19秒前
温柔一枪王小双完成签到,获得积分10
19秒前
甜橘完成签到,获得积分10
19秒前
王煊发布了新的文献求助10
20秒前
21秒前
Livy发布了新的文献求助10
21秒前
遇上就这样吧应助FrancisCho采纳,获得200
21秒前
21秒前
zhang发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287819
求助须知:如何正确求助?哪些是违规求助? 4439834
关于积分的说明 13823167
捐赠科研通 4322057
什么是DOI,文献DOI怎么找? 2372274
邀请新用户注册赠送积分活动 1367845
关于科研通互助平台的介绍 1331344