Gender Classification Based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images in the IoT Environment

计算机科学 指纹(计算) 人工智能 离散余弦变换 特征提取 模式识别(心理学) 指纹识别 频域 背景(考古学) 标识符 深度学习 生物识别 计算机视觉 图像(数学) 古生物学 生物 程序设计语言
作者
Lingzhen Kong,Kangkang Liu,Xiyuan Hu,Ning Zhang,Lianyong Qi,Xiangrui Li,Xiaokang Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25731-25743 被引量:2
标识
DOI:10.1109/jiot.2024.3381428
摘要

In the rapidly evolving landscape of the Internet of Things (IoT), concerns about privacy and security have become significant as interconnected devices communicate and collaborate. Fingerprints, serving as unique biometric identifiers, play a crucial role in the authentication and identification processes within this interconnected and exchanged network. However, attention is often directed towards the disclosure of visible fingerprints, overlooking latent fingerprints. This is primarily due to the challenges involved in extracting latent fingerprints, especially those remaining on the adhesive side of tape. Traditional methods physically/chemically peel tape to extract these fingerprints, but cause irreversible damage to the tape, hindering accurate fingerprint extraction. In this context, our investigation reveals that Optical Coherence Tomography (OCT) technology allows for the extraction of high-quality OCT fingerprint images from the adhesive side of tape, yielding precise fingerprint recognition and gender classification results. Concretely, we build a novel type of robotic-arm spectral-domain OCT (SD-OCT), which is software-controlled for the movement of the sample arm, making sample scanning more flexible and efficient. Furthermore, we utilize a deep learning network to perform representation learning on OCT fingerprints for the purpose of gender classification. In the first branch, we input OCT fingerprints into an EfficientNet-B3 network to learn their spatial domain features. Simultaneously, in the second branch, we design a network that utilizes Discrete Cosine Transform (DCT) to extract frequency domain features from OCT fingerprints. Ultimately, we integrate the spatial and frequency domain features extracted from OCT fingerprint images to generate comprehensive features. Therefore, in this paper, we introduce a novel Gender Classification approach based on Spatio-Frequency Feature Fusion of OCT Fingerprint Images (named GenClassOCT-SF). The GenClassOCT-SF involves a robotic-arm SD-OCT system for superior-quality fingerprints acquisition and a deep learning network for spatial and frequency domain feature extraction. The fusion of these features enables highly accurate gender classification. Finally, we conduct gender classification experiments on the collected OCT fingerprint dataset to demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李x完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
zhang完成签到 ,获得积分20
1秒前
喂喂发布了新的文献求助10
3秒前
glitter发布了新的文献求助10
3秒前
3秒前
jingjili应助poly采纳,获得80
3秒前
3秒前
虚心的飞鸟完成签到 ,获得积分10
4秒前
5秒前
cc发布了新的文献求助10
6秒前
heylay发布了新的文献求助30
6秒前
思源应助云墨采纳,获得10
7秒前
7秒前
9秒前
甜美的瑾瑜完成签到,获得积分10
10秒前
hjr发布了新的文献求助10
10秒前
喂喂完成签到,获得积分10
12秒前
浪漫主义诗人完成签到,获得积分10
12秒前
allenise完成签到,获得积分10
12秒前
GoQjSq3完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
慧慧完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助50
16秒前
刺猬皮55完成签到,获得积分10
18秒前
西西完成签到,获得积分10
19秒前
沈彬彬发布了新的文献求助10
19秒前
大模型应助ceeray23采纳,获得20
19秒前
20秒前
英姑应助GoQjSq3采纳,获得30
20秒前
21秒前
glitter完成签到,获得积分20
21秒前
zxy完成签到,获得积分10
22秒前
22秒前
淡然葶完成签到 ,获得积分10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124448
求助须知:如何正确求助?哪些是违规求助? 4328721
关于积分的说明 13488255
捐赠科研通 4163099
什么是DOI,文献DOI怎么找? 2282182
邀请新用户注册赠送积分活动 1283377
关于科研通互助平台的介绍 1222607