Quantification of cervical spinal stenosis by automated 3D MRI segmentation of spinal cord and cerebrospinal fluid space

医学 狭窄 椎管狭窄 放射科 分割 脊髓 尤登J统计 腰椎 人工智能 接收机工作特性 内科学 计算机科学 精神科
作者
Marc Hohenhaus,Jan‐Helge Klingler,Christoph Scholz,Ralf Watzlawick,Ulrich Hubbe,Jürgen Beck,Marco Reisert,Urs Würtemberger,Nico Kremers,Katharina Wolf
出处
期刊:Spinal Cord [Springer Nature]
卷期号:62 (7): 371-377 被引量:1
标识
DOI:10.1038/s41393-024-00993-8
摘要

Abstract Design Prospective diagnostic study. Objectives Anatomical evaluation and graduation of the severity of spinal stenosis is essential in degenerative cervical spine disease. In clinical practice, this is subjectively categorized on cervical MRI lacking an objective and reliable classification. We implemented a fully-automated quantification of spinal canal compromise through 3D T2-weighted MRI segmentation. Setting Medical Center - University of Freiburg, Germany. Methods Evaluation of 202 participants receiving 3D T2-weighted MRI of the cervical spine. Segments C2/3 to C6/7 were analyzed for spinal cord and cerebrospinal fluid space volume through a fully-automated segmentation based on a trained deep convolutional neural network. Spinal canal narrowing was characterized by relative values, across sever segments as adapted Maximal Canal Compromise (aMCC), and within the index segment as adapted Spinal Cord Occupation Ratio (aSCOR). Additionally, all segments were subjectively categorized by three observers as “no”, “relative” or “absolute” stenosis. Computed scores were applied on the subjective categorization. Results 798 (79.0%) segments were subjectively categorized as “no” stenosis, 85 (8.4%) as “relative” stenosis, and 127 (12.6%) as “absolute” stenosis. The calculated scores revealed significant differences between each category ( p ≤ 0.001). Youden’s Index analysis of ROC curves revealed optimal cut-offs to distinguish between “no” and “relative” stenosis for aMCC = 1.18 and aSCOR = 36.9%, and between “relative” and “absolute” stenosis for aMCC = 1.54 and aSCOR = 49.3%. Conclusion The presented fully-automated segmentation algorithm provides high diagnostic accuracy and objective classification of cervical spinal stenosis. The calculated cut-offs can be used for convenient radiological quantification of the severity of spinal canal compromise in clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DYW发布了新的文献求助10
刚刚
1秒前
1秒前
Luna完成签到 ,获得积分10
1秒前
六个核桃手拉手完成签到 ,获得积分10
1秒前
传奇3应助猪美丽采纳,获得10
2秒前
大个应助Lzx111采纳,获得10
2秒前
caia完成签到,获得积分10
2秒前
Calvin完成签到,获得积分20
2秒前
xu完成签到,获得积分10
2秒前
桃子粥完成签到,获得积分10
3秒前
3秒前
希望天下0贩的0应助dierda采纳,获得10
4秒前
wshwx发布了新的文献求助10
4秒前
li完成签到,获得积分20
4秒前
朴素访琴完成签到 ,获得积分10
5秒前
饱满的新之完成签到 ,获得积分10
5秒前
脑洞疼应助加速度采纳,获得10
6秒前
Cloud完成签到,获得积分10
6秒前
少年珮发布了新的文献求助10
6秒前
Peiyu发布了新的文献求助10
6秒前
田様应助乙酰胆碱采纳,获得10
6秒前
寒冷乐驹发布了新的文献求助10
6秒前
李健应助张曼采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
yangjun发布了新的文献求助10
7秒前
7秒前
123完成签到 ,获得积分10
7秒前
nananana完成签到 ,获得积分10
8秒前
YJ完成签到,获得积分10
8秒前
9秒前
yinbichu完成签到,获得积分10
9秒前
活力书包完成签到 ,获得积分10
10秒前
在人间完成签到,获得积分10
10秒前
冷酷小松鼠完成签到,获得积分10
10秒前
慕青应助自由的秋蝶采纳,获得10
11秒前
11秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122356
求助须知:如何正确求助?哪些是违规求助? 2772858
关于积分的说明 7714795
捐赠科研通 2428308
什么是DOI,文献DOI怎么找? 1289700
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183