Quantification of cervical spinal stenosis by automated 3D MRI segmentation of spinal cord and cerebrospinal fluid space

医学 狭窄 椎管狭窄 放射科 分割 脊髓 尤登J统计 腰椎 人工智能 接收机工作特性 内科学 精神科 计算机科学
作者
Marc Hohenhaus,Jan‐Helge Klingler,Christoph Scholz,Ralf Watzlawick,Ulrich Hubbe,Jürgen Beck,Marco Reisert,Urs Würtemberger,Nico Kremers,Katharina Wolf
出处
期刊:Spinal Cord [Springer Nature]
卷期号:62 (7): 371-377 被引量:1
标识
DOI:10.1038/s41393-024-00993-8
摘要

Abstract Design Prospective diagnostic study. Objectives Anatomical evaluation and graduation of the severity of spinal stenosis is essential in degenerative cervical spine disease. In clinical practice, this is subjectively categorized on cervical MRI lacking an objective and reliable classification. We implemented a fully-automated quantification of spinal canal compromise through 3D T2-weighted MRI segmentation. Setting Medical Center - University of Freiburg, Germany. Methods Evaluation of 202 participants receiving 3D T2-weighted MRI of the cervical spine. Segments C2/3 to C6/7 were analyzed for spinal cord and cerebrospinal fluid space volume through a fully-automated segmentation based on a trained deep convolutional neural network. Spinal canal narrowing was characterized by relative values, across sever segments as adapted Maximal Canal Compromise (aMCC), and within the index segment as adapted Spinal Cord Occupation Ratio (aSCOR). Additionally, all segments were subjectively categorized by three observers as “no”, “relative” or “absolute” stenosis. Computed scores were applied on the subjective categorization. Results 798 (79.0%) segments were subjectively categorized as “no” stenosis, 85 (8.4%) as “relative” stenosis, and 127 (12.6%) as “absolute” stenosis. The calculated scores revealed significant differences between each category ( p ≤ 0.001). Youden’s Index analysis of ROC curves revealed optimal cut-offs to distinguish between “no” and “relative” stenosis for aMCC = 1.18 and aSCOR = 36.9%, and between “relative” and “absolute” stenosis for aMCC = 1.54 and aSCOR = 49.3%. Conclusion The presented fully-automated segmentation algorithm provides high diagnostic accuracy and objective classification of cervical spinal stenosis. The calculated cut-offs can be used for convenient radiological quantification of the severity of spinal canal compromise in clinical routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨旱莲完成签到,获得积分10
2秒前
scott_zip发布了新的文献求助10
2秒前
奥利给完成签到,获得积分10
2秒前
明明完成签到 ,获得积分10
3秒前
芹菜自愿内卷完成签到,获得积分10
3秒前
zokor完成签到 ,获得积分0
6秒前
努力退休小博士完成签到 ,获得积分10
7秒前
橙子完成签到,获得积分10
8秒前
陈补天完成签到 ,获得积分10
9秒前
CipherSage应助慧灰huihui采纳,获得10
10秒前
乐观健柏完成签到,获得积分10
11秒前
13秒前
CodeCraft应助大橙子采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
jeeya完成签到,获得积分10
15秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
伦语发布了新的文献求助10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
xuzj应助科研通管家采纳,获得10
17秒前
xuzj应助科研通管家采纳,获得10
17秒前
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
丘比特应助科研通管家采纳,获得10
18秒前
yull完成签到,获得积分10
18秒前
小巧书雪完成签到,获得积分10
21秒前
大大怪将军完成签到,获得积分10
22秒前
哈哈哈完成签到 ,获得积分0
22秒前
小怪完成签到,获得积分10
23秒前
爱吃泡芙完成签到,获得积分10
24秒前
白桃战士完成签到,获得积分10
25秒前
27秒前
qingchenwuhou完成签到 ,获得积分10
27秒前
XXX完成签到,获得积分10
28秒前
锡嘻完成签到 ,获得积分10
28秒前
29秒前
彗星入梦完成签到 ,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022