Identification of shared potential diagnostic markers in asthma and depression through bioinformatics analysis and machine learning

列线图 微阵列 计算生物学 基因 免疫系统 微阵列分析技术 支持向量机 基因表达谱 哮喘 生物信息学 基因表达 生物 医学 机器学习 免疫学 肿瘤科 遗传学 计算机科学
作者
Hui Jiang,Chang-yong Fu
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:133: 112064-112064
标识
DOI:10.1016/j.intimp.2024.112064
摘要

There is mounting evidence that asthma might exacerbate depression. We sought to examine candidates for diagnostic genes in patients suffering from asthma and depression. Microarray data were downloaded from the Gene Expression Omnibus(GEO) database and used to screen for differential expressed genes(DEGs) in the SA and MDD datasets. A weighted gene co-expression network analysis(WGCNA) was used to identify the co-expression modules of SA and MDD. The least absolute shrinkage and selection operatoes(LASSO) and support vector machine(SVM) were used to determine critical biomarkers. Immune cell infiltration analysis was used to investigate the correlation between immune cell infiltration and common biomarkers of SA and MDD. Finally, validation of these analytical results was accomplished via the use of both in vivo and in vitro studies. The number of DEGs that were included in the MDD dataset was 5177, whereas the asthma dataset had 1634 DEGs. The intersection of DEGs for SA and MDD included 351 genes, the strongest positive modules of SA and MDD was 119 genes, which played a function in immunity. The intersection of DEGs and modular hub genes was 54, following the analysis using machine learning algorithms,three hub genes were identified and employed to formulate a nomogram and for the evaluation of diagnostic effectiveness, which demonstrated a significant diagnostic value (area under the curve from 0.646 to 0.979). Additionally, immunocyte disorder was identified by immune infiltration. In vitro studies have revealed that STK11IP deficiency aggravated the LPS/IFN-γinduced up-regulation in M1 macrophage activation. Asthma and MDD pathophysiology may be associated with alterations in inflammatory processes and immune pathways. Additionally, STK11IP may serve as a diagnostic marker for individuals with the two conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助飘逸澜采纳,获得10
1秒前
拖拖发布了新的文献求助10
4秒前
4秒前
22发布了新的文献求助10
5秒前
WO发布了新的文献求助10
5秒前
CipherSage应助miao采纳,获得30
6秒前
子车雁开完成签到,获得积分10
7秒前
大个应助小五屁孩儿采纳,获得10
10秒前
yiersan完成签到,获得积分10
12秒前
田様应助1233333采纳,获得10
13秒前
科研通AI5应助子车雁开采纳,获得10
13秒前
LONG完成签到,获得积分10
13秒前
俏皮的山水完成签到,获得积分10
14秒前
22完成签到,获得积分20
17秒前
taozidetao完成签到 ,获得积分10
19秒前
23秒前
科研通AI5应助天真的夏波采纳,获得30
23秒前
24秒前
杉杉完成签到 ,获得积分10
25秒前
舔舔完成签到 ,获得积分10
26秒前
酷波er应助8033采纳,获得30
27秒前
28秒前
俏皮凌蝶完成签到,获得积分10
29秒前
充电宝应助木木三采纳,获得10
29秒前
29秒前
迷路向松发布了新的文献求助10
30秒前
orixero应助西原的橙果采纳,获得10
31秒前
乐乐应助WO采纳,获得10
32秒前
lbl发布了新的文献求助10
32秒前
阿宝完成签到,获得积分0
33秒前
儒雅的冷梅完成签到 ,获得积分10
34秒前
35秒前
学习完成签到 ,获得积分10
36秒前
阿宝发布了新的文献求助10
37秒前
苦行僧完成签到 ,获得积分10
38秒前
39秒前
40秒前
little佳关注了科研通微信公众号
42秒前
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423