Controlling Shareholder Characteristics and Corporate Debt Default Risk: Evidence Based on Machine Learning

股东 业务 衡平法 股东贷款 公司治理 债务 信用风险 征用 会计 精算学 金融经济学 财务 经济 不良贷款 市场经济 不合格贷款 贷款 政治学 法学
作者
Di Wang,Zhanchi Wu,Bangzhu Zhu
出处
期刊:Emerging Markets Finance and Trade [Taylor & Francis]
卷期号:58 (12): 3324-3339 被引量:10
标识
DOI:10.1080/1540496x.2022.2037416
摘要

The influence of controlling shareholder characteristics on corporate risk has been a popular topic for discussion in academic and theoretical circles. However, current research lacks systematic and quantitative conclusions based on predictive ability, as it only focuses on the causal relationship between a single characteristic of the controlling shareholder and corporate risk. This paper utilizes the back propagation neural network based on gray wolf algorithm (GWO-BP) method in the machine learning algorithm for the first time and takes the listed companies that publicly issue bonds in the Chinese bond market as a research sample. It summarizes the qualities of controlling shareholders from the perspective of controlling shareholders' risk-taking and benefits expropriation and examines multi-dimensional controlling shareholder characteristics for predicting the debt default risk of companies. This research established that: (1) Overall, the characteristics of controlling shareholders can improve the ability to predict the debt default of a company; (2) The features of the investment portfolio of the controlling shareholder have a higher degree of predicting the debt default risk of a company,while the properties of equity structure and related transactions have a lower degree of predicting the risk of corporate debt default.This research not only uses machine learning methods to study controlling shareholders in China from a more comprehensive perspective but also provides a useful incentive for bondholders to protect their interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浩铭完成签到,获得积分10
刚刚
zyn关闭了zyn文献求助
刚刚
莫虚发布了新的文献求助10
1秒前
www完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助150
1秒前
付威威完成签到,获得积分10
1秒前
岛屿发布了新的文献求助10
2秒前
调皮的问芙完成签到 ,获得积分10
2秒前
2秒前
大白沙子完成签到,获得积分10
2秒前
3秒前
橙橙橙橙完成签到,获得积分10
3秒前
丘比特应助毛毛弟采纳,获得10
3秒前
3秒前
no1isme完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
英勇的沛春完成签到 ,获得积分10
5秒前
隐形曼青应助孔大漂亮采纳,获得10
5秒前
丛士乔完成签到,获得积分10
5秒前
5秒前
kiki发布了新的文献求助30
6秒前
cooper完成签到 ,获得积分10
6秒前
HarryQ完成签到,获得积分10
7秒前
wxj发布了新的文献求助10
7秒前
咕咕嘎嘎完成签到,获得积分10
7秒前
8秒前
俭朴的可冥完成签到,获得积分10
8秒前
Yang_728发布了新的文献求助10
8秒前
科研通AI5应助岛屿采纳,获得10
8秒前
Cxxxxxxv完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助50
10秒前
10秒前
TIPHA发布了新的文献求助10
10秒前
艾欧大贝发布了新的文献求助10
11秒前
赘婿应助XYT采纳,获得10
11秒前
科研通AI5应助SONG采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917