Controlling Shareholder Characteristics and Corporate Debt Default Risk: Evidence Based on Machine Learning

股东 业务 衡平法 股东贷款 公司治理 债务 信用风险 征用 会计 精算学 金融经济学 财务 经济 不良贷款 不合格贷款 法学 市场经济 贷款 政治学
作者
Di Wang,Zhanchi Wu,Bangzhu Zhu
出处
期刊:Emerging Markets Finance and Trade [Informa]
卷期号:58 (12): 3324-3339 被引量:11
标识
DOI:10.1080/1540496x.2022.2037416
摘要

The influence of controlling shareholder characteristics on corporate risk has been a popular topic for discussion in academic and theoretical circles. However, current research lacks systematic and quantitative conclusions based on predictive ability, as it only focuses on the causal relationship between a single characteristic of the controlling shareholder and corporate risk. This paper utilizes the back propagation neural network based on gray wolf algorithm (GWO-BP) method in the machine learning algorithm for the first time and takes the listed companies that publicly issue bonds in the Chinese bond market as a research sample. It summarizes the qualities of controlling shareholders from the perspective of controlling shareholders' risk-taking and benefits expropriation and examines multi-dimensional controlling shareholder characteristics for predicting the debt default risk of companies. This research established that: (1) Overall, the characteristics of controlling shareholders can improve the ability to predict the debt default of a company; (2) The features of the investment portfolio of the controlling shareholder have a higher degree of predicting the debt default risk of a company,while the properties of equity structure and related transactions have a lower degree of predicting the risk of corporate debt default.This research not only uses machine learning methods to study controlling shareholders in China from a more comprehensive perspective but also provides a useful incentive for bondholders to protect their interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘春燕完成签到,获得积分20
刚刚
无辜的鼠标完成签到,获得积分10
刚刚
等天黑完成签到,获得积分10
刚刚
斯文败类应助林狗采纳,获得10
1秒前
鹏程完成签到 ,获得积分10
1秒前
科研通AI2S应助林狗采纳,获得10
1秒前
慕青应助林狗采纳,获得10
1秒前
小二郎应助林狗采纳,获得10
1秒前
香蕉觅云应助林狗采纳,获得10
1秒前
桐桐应助林狗采纳,获得10
1秒前
orixero应助林狗采纳,获得10
1秒前
Hello应助林狗采纳,获得10
1秒前
星辰大海应助林狗采纳,获得10
1秒前
2秒前
黑白完成签到 ,获得积分10
3秒前
3秒前
4秒前
Hello应助XINWU采纳,获得10
5秒前
QDU应助如意伟诚采纳,获得20
6秒前
彭于晏应助lxz采纳,获得10
6秒前
7秒前
Ieklos完成签到,获得积分10
7秒前
nihao完成签到,获得积分20
7秒前
xx发布了新的文献求助10
7秒前
qqqq完成签到,获得积分10
8秒前
9秒前
爆米花应助屈春洋采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
圆锥香蕉应助科研通管家采纳,获得20
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
11秒前
华仔应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
曾无忧应助科研通管家采纳,获得10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
敬老院N号应助科研通管家采纳,获得30
12秒前
WJH应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867