亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Controlling Shareholder Characteristics and Corporate Debt Default Risk: Evidence Based on Machine Learning

股东 业务 衡平法 股东贷款 公司治理 债务 信用风险 征用 会计 精算学 金融经济学 财务 经济 不良贷款 不合格贷款 法学 市场经济 贷款 政治学
作者
Di Wang,Zhanchi Wu,Bangzhu Zhu
出处
期刊:Emerging Markets Finance and Trade [Informa]
卷期号:58 (12): 3324-3339 被引量:7
标识
DOI:10.1080/1540496x.2022.2037416
摘要

The influence of controlling shareholder characteristics on corporate risk has been a popular topic for discussion in academic and theoretical circles. However, current research lacks systematic and quantitative conclusions based on predictive ability, as it only focuses on the causal relationship between a single characteristic of the controlling shareholder and corporate risk. This paper utilizes the back propagation neural network based on gray wolf algorithm (GWO-BP) method in the machine learning algorithm for the first time and takes the listed companies that publicly issue bonds in the Chinese bond market as a research sample. It summarizes the qualities of controlling shareholders from the perspective of controlling shareholders' risk-taking and benefits expropriation and examines multi-dimensional controlling shareholder characteristics for predicting the debt default risk of companies. This research established that: (1) Overall, the characteristics of controlling shareholders can improve the ability to predict the debt default of a company; (2) The features of the investment portfolio of the controlling shareholder have a higher degree of predicting the debt default risk of a company,while the properties of equity structure and related transactions have a lower degree of predicting the risk of corporate debt default.This research not only uses machine learning methods to study controlling shareholders in China from a more comprehensive perspective but also provides a useful incentive for bondholders to protect their interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
13秒前
18秒前
Hao_Luu发布了新的文献求助10
19秒前
syr完成签到 ,获得积分10
24秒前
29秒前
33秒前
37秒前
STEAD完成签到,获得积分10
38秒前
Zoye完成签到,获得积分20
40秒前
42秒前
欧阳璐发布了新的文献求助10
43秒前
47秒前
59秒前
ding应助Eunhyo采纳,获得10
1分钟前
星流xx完成签到 ,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
应应完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Eunhyo发布了新的文献求助10
1分钟前
1分钟前
1分钟前
gt完成签到 ,获得积分10
1分钟前
黄沙漠完成签到 ,获得积分10
2分钟前
上官若男应助zhyubo7采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
zhyubo7完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356823
求助须知:如何正确求助?哪些是违规求助? 2980410
关于积分的说明 8694380
捐赠科研通 2662091
什么是DOI,文献DOI怎么找? 1457587
科研通“疑难数据库(出版商)”最低求助积分说明 674819
邀请新用户注册赠送积分活动 665734