亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Controlling Shareholder Characteristics and Corporate Debt Default Risk: Evidence Based on Machine Learning

股东 业务 衡平法 股东贷款 公司治理 债务 信用风险 征用 会计 精算学 金融经济学 财务 经济 不良贷款 不合格贷款 法学 市场经济 贷款 政治学
作者
Di Wang,Zhanchi Wu,Bangzhu Zhu
出处
期刊:Emerging Markets Finance and Trade [Taylor & Francis]
卷期号:58 (12): 3324-3339 被引量:10
标识
DOI:10.1080/1540496x.2022.2037416
摘要

The influence of controlling shareholder characteristics on corporate risk has been a popular topic for discussion in academic and theoretical circles. However, current research lacks systematic and quantitative conclusions based on predictive ability, as it only focuses on the causal relationship between a single characteristic of the controlling shareholder and corporate risk. This paper utilizes the back propagation neural network based on gray wolf algorithm (GWO-BP) method in the machine learning algorithm for the first time and takes the listed companies that publicly issue bonds in the Chinese bond market as a research sample. It summarizes the qualities of controlling shareholders from the perspective of controlling shareholders' risk-taking and benefits expropriation and examines multi-dimensional controlling shareholder characteristics for predicting the debt default risk of companies. This research established that: (1) Overall, the characteristics of controlling shareholders can improve the ability to predict the debt default of a company; (2) The features of the investment portfolio of the controlling shareholder have a higher degree of predicting the debt default risk of a company,while the properties of equity structure and related transactions have a lower degree of predicting the risk of corporate debt default.This research not only uses machine learning methods to study controlling shareholders in China from a more comprehensive perspective but also provides a useful incentive for bondholders to protect their interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到 ,获得积分10
7秒前
sci2025opt完成签到 ,获得积分10
11秒前
siv完成签到,获得积分10
33秒前
科研通AI6应助懦弱的丹秋采纳,获得10
41秒前
科研兵发布了新的文献求助10
47秒前
天天快乐应助shee采纳,获得10
53秒前
搜集达人应助科研兵采纳,获得10
54秒前
insomnia417完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
6分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
Ji完成签到,获得积分10
7分钟前
阔达白凡完成签到,获得积分10
7分钟前
桥西小河完成签到 ,获得积分10
7分钟前
TongKY完成签到 ,获得积分10
8分钟前
8分钟前
美丽的冰枫完成签到,获得积分10
8分钟前
义气的断秋完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827