A novel adversarial domain adaptation transfer learning method for tool wear state prediction

计算机科学 机械加工 学习迁移 人工智能 刀具磨损 机器学习 特征(语言学) 领域(数学分析) 机械工程 数学 语言学 工程类 数学分析 哲学
作者
Kai Li,Ming-Song Chen,Y.C. Lin,Zhou Li,Xianshi Jia,Bin Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:254: 109537-109537 被引量:52
标识
DOI:10.1016/j.knosys.2022.109537
摘要

Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity in machining. The traditional tool wear prediction based on deep learning mostly considers the same type of tools under the same working conditions. It assumes that the collected data obey the same distribution and that the training data labels are sufficient, which has significant limitations in practical machining applications. In this paper, a novel adversarial domain adaptation transfer learning was proposed to predict the tool wear state of end milling tools under different working conditions, including the laboratory and actual industrial machining conditions. Firstly, the dual-path deep residual shrinkage network was used to extract the tool wear multiscale sensitive features from the spindle vibration signals. Then, a balance parameter was added to the traditional adversarial domain adaptation model, which can dynamically and quantitatively evaluate the relative importance of marginal and conditional distribution. Thus, the alignment of the source and target tool feature space was realized by dynamically learning domain invariant representations. Finally, the proposed method was verified on an 8 mm and 2 mm tool wear states prediction. Compared with different transfer learning methods, the superiority of the proposed dynamic adversarial domain adaptation method was proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
善学以致用应助SDSD采纳,获得200
1秒前
12完成签到,获得积分10
1秒前
2秒前
大地完成签到,获得积分10
2秒前
3秒前
乐乐应助1123采纳,获得10
3秒前
江南完成签到,获得积分10
3秒前
谦谦神棍发布了新的文献求助10
4秒前
老北京发布了新的文献求助10
5秒前
yo一天发布了新的文献求助10
7秒前
7秒前
流浪完成签到,获得积分10
8秒前
Sonal发布了新的文献求助10
9秒前
思源应助仁爱千亦采纳,获得10
9秒前
乐乐应助ZCX采纳,获得30
9秒前
zhaozhao完成签到 ,获得积分10
10秒前
10秒前
33号先生发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
英俊的铭应助哆发文章啦采纳,获得10
14秒前
朝朝暮夕完成签到 ,获得积分10
14秒前
Jasper应助glycine采纳,获得10
15秒前
1123发布了新的文献求助10
15秒前
化学天空完成签到,获得积分10
16秒前
16秒前
18秒前
zz发布了新的文献求助10
20秒前
小小怪下士应助从容从灵采纳,获得30
21秒前
21秒前
蚊蚊爱读书应助舒适的素采纳,获得10
21秒前
狂暴战士发布了新的文献求助10
23秒前
23秒前
25秒前
沫哈完成签到,获得积分10
26秒前
云岫发布了新的文献求助10
27秒前
yrw完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
优美橘子发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497