A novel adversarial domain adaptation transfer learning method for tool wear state prediction

计算机科学 机械加工 学习迁移 人工智能 刀具磨损 机器学习 特征(语言学) 领域(数学分析) 机械工程 数学 语言学 哲学 数学分析 工程类
作者
Kai Li,Ming-Song Chen,Y.C. Lin,Zhou Li,Xianshi Jia,Bin Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:254: 109537-109537 被引量:37
标识
DOI:10.1016/j.knosys.2022.109537
摘要

Tool wear prediction is of critical importance to maintain the desired part quality and improve productivity in machining. The traditional tool wear prediction based on deep learning mostly considers the same type of tools under the same working conditions. It assumes that the collected data obey the same distribution and that the training data labels are sufficient, which has significant limitations in practical machining applications. In this paper, a novel adversarial domain adaptation transfer learning was proposed to predict the tool wear state of end milling tools under different working conditions, including the laboratory and actual industrial machining conditions. Firstly, the dual-path deep residual shrinkage network was used to extract the tool wear multiscale sensitive features from the spindle vibration signals. Then, a balance parameter was added to the traditional adversarial domain adaptation model, which can dynamically and quantitatively evaluate the relative importance of marginal and conditional distribution. Thus, the alignment of the source and target tool feature space was realized by dynamically learning domain invariant representations. Finally, the proposed method was verified on an 8 mm and 2 mm tool wear states prediction. Compared with different transfer learning methods, the superiority of the proposed dynamic adversarial domain adaptation method was proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
面壁的章北海完成签到,获得积分10
刚刚
1秒前
JW完成签到,获得积分10
2秒前
风中天宇完成签到,获得积分20
2秒前
morena发布了新的文献求助30
3秒前
4秒前
4秒前
千跃举报白了个白求助涉嫌违规
6秒前
世佳何完成签到,获得积分10
6秒前
NexusExplorer应助自然映梦采纳,获得10
6秒前
fdgg012345发布了新的文献求助10
7秒前
7秒前
10秒前
10秒前
10秒前
11秒前
SYLH应助哈哈哈哈哈采纳,获得10
11秒前
面包完成签到,获得积分10
11秒前
12秒前
N7发布了新的文献求助10
14秒前
wjx发布了新的文献求助10
15秒前
kafei发布了新的文献求助30
15秒前
15秒前
lplmid发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
着急的日记本关注了科研通微信公众号
18秒前
19秒前
李亚楠完成签到,获得积分20
20秒前
明月松间赵女士完成签到,获得积分10
20秒前
20秒前
21秒前
自然映梦发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
Lucas应助拼搏篮球采纳,获得10
22秒前
栗子完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952732
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11090865
捐赠科研通 3228782
什么是DOI,文献DOI怎么找? 1785114
邀请新用户注册赠送积分活动 869105
科研通“疑难数据库(出版商)”最低求助积分说明 801350