Two-Stage Multi-Objective Evolution Strategy for Constrained Multi-Objective Optimization

数学优化 趋同(经济学) 多目标优化 约束(计算机辅助设计) 人口 计算机科学 帕累托原理 早熟收敛 约束优化 数学 遗传算法 几何学 人口学 社会学 经济 经济增长
作者
Kai Zhang,Zhengyong Xu,Gary G. Yen,Ling Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2022.3202723
摘要

For the past many years, several constrained multiobjective evolutionary algorithms (CMOEAs) have been designed for solving constrained multi-objective optimization problems (CMOPs). In these CMOEAs, some constraint-handling techniques (CHTs) were proposed to balance the convergence and constrained satisfaction, however, they still face some serious challenges, such as premature convergence to the local optimal region and labor-intensive tuning of parameters for a specific CMOP. Furthermore, most of the existing CHTs are derived by solving constrained single-objective optimization. The information hidden from the feasible non-dominated set (FNDS) has not been fully utilized. This study proposed a novel parameter-less constraint handling technique, which divides the entire population into three mutually exclusive subsets dynamically: FNDS, the subset dominated by FNDS, and the subset not dominated by FNDS. According to the proposed division of labor, it is not necessary to balance the convergence and constrained satisfaction in each subset. To avoid being entrapped in local optima, the proposed algorithm adopts a two-stage strategy to solve CMOPs. In the first stage, the proposed algorithm focuses solely on converging toward the unconstrained Pareto front without considering the constrained satisfaction. In the second stage, the FNDS constraint handling technique is adopted to guide the population converging toward constrained Pareto front effectively. The performance of the proposed algorithm was compared to that of nine state-of-the-art CMOEAs, and the comparison results show that the proposed algorithm performs significantly better on the CF, MW, and LIRCMOP test suites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火火火小朋友完成签到 ,获得积分10
1秒前
wlm完成签到,获得积分10
3秒前
何必发布了新的文献求助10
3秒前
又又应助我要吃挂面采纳,获得10
4秒前
zjspidany应助心系你采纳,获得10
6秒前
6秒前
6秒前
思源应助gaogao采纳,获得10
6秒前
娟娟完成签到 ,获得积分10
6秒前
9秒前
何必完成签到,获得积分10
10秒前
10秒前
Akim应助11111111111采纳,获得10
11秒前
键华发布了新的文献求助30
11秒前
qq完成签到,获得积分10
12秒前
Candice应助涵霸天采纳,获得10
13秒前
123完成签到,获得积分10
13秒前
zzzsss发布了新的文献求助10
13秒前
xixi发布了新的文献求助10
14秒前
十月二十发布了新的文献求助10
14秒前
左丘丹烟完成签到,获得积分10
15秒前
不是省油的灯完成签到,获得积分10
15秒前
lime发布了新的文献求助10
15秒前
元不二发布了新的文献求助10
15秒前
深情安青应助失眠的元风采纳,获得10
16秒前
wlm发布了新的文献求助10
16秒前
SciGPT应助Amber采纳,获得100
17秒前
赘婿应助甜甜小蜜蜂采纳,获得10
17秒前
17秒前
无花果应助Nicole采纳,获得10
17秒前
大街小巷完成签到,获得积分10
18秒前
18秒前
英俊的铭应助热心的紫寒采纳,获得10
20秒前
小鹿斑比完成签到,获得积分10
21秒前
splash发布了新的文献求助10
21秒前
我是老大应助yyyxxx采纳,获得10
21秒前
Hello应助元不二采纳,获得10
23秒前
23秒前
24秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260841
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318187
捐赠科研通 2571677
什么是DOI,文献DOI怎么找? 1397150
科研通“疑难数据库(出版商)”最低求助积分说明 653663
邀请新用户注册赠送积分活动 632213