Two-Stage Multi-Objective Evolution Strategy for Constrained Multi-Objective Optimization

数学优化 趋同(经济学) 多目标优化 约束(计算机辅助设计) 人口 计算机科学 帕累托原理 早熟收敛 约束优化 数学 遗传算法 几何学 经济增长 社会学 人口学 经济
作者
Kai Zhang,Zhengyong Xu,Gary G. Yen,Ling Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2022.3202723
摘要

For the past many years, several constrained multiobjective evolutionary algorithms (CMOEAs) have been designed for solving constrained multi-objective optimization problems (CMOPs). In these CMOEAs, some constraint-handling techniques (CHTs) were proposed to balance the convergence and constrained satisfaction, however, they still face some serious challenges, such as premature convergence to the local optimal region and labor-intensive tuning of parameters for a specific CMOP. Furthermore, most of the existing CHTs are derived by solving constrained single-objective optimization. The information hidden from the feasible non-dominated set (FNDS) has not been fully utilized. This study proposed a novel parameter-less constraint handling technique, which divides the entire population into three mutually exclusive subsets dynamically: FNDS, the subset dominated by FNDS, and the subset not dominated by FNDS. According to the proposed division of labor, it is not necessary to balance the convergence and constrained satisfaction in each subset. To avoid being entrapped in local optima, the proposed algorithm adopts a two-stage strategy to solve CMOPs. In the first stage, the proposed algorithm focuses solely on converging toward the unconstrained Pareto front without considering the constrained satisfaction. In the second stage, the FNDS constraint handling technique is adopted to guide the population converging toward constrained Pareto front effectively. The performance of the proposed algorithm was compared to that of nine state-of-the-art CMOEAs, and the comparison results show that the proposed algorithm performs significantly better on the CF, MW, and LIRCMOP test suites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
cxxxx发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
1秒前
机灵的宛亦完成签到 ,获得积分10
1秒前
wuhuhu应助科研通管家采纳,获得10
1秒前
七安发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得80
3秒前
华仔应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
奶牛在吃豆完成签到,获得积分20
3秒前
HLS应助科研通管家采纳,获得10
3秒前
无花果应助80s采纳,获得10
3秒前
安清完成签到,获得积分10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
浮游应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
熬夜波比应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
小猴子应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057