已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two-Stage Multi-Objective Evolution Strategy for Constrained Multi-Objective Optimization

数学优化 趋同(经济学) 多目标优化 约束(计算机辅助设计) 人口 计算机科学 帕累托原理 早熟收敛 约束优化 数学 遗传算法 几何学 经济增长 社会学 人口学 经济
作者
Kai Zhang,Zhengyong Xu,Gary G. Yen,Ling Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2022.3202723
摘要

For the past many years, several constrained multiobjective evolutionary algorithms (CMOEAs) have been designed for solving constrained multi-objective optimization problems (CMOPs). In these CMOEAs, some constraint-handling techniques (CHTs) were proposed to balance the convergence and constrained satisfaction, however, they still face some serious challenges, such as premature convergence to the local optimal region and labor-intensive tuning of parameters for a specific CMOP. Furthermore, most of the existing CHTs are derived by solving constrained single-objective optimization. The information hidden from the feasible non-dominated set (FNDS) has not been fully utilized. This study proposed a novel parameter-less constraint handling technique, which divides the entire population into three mutually exclusive subsets dynamically: FNDS, the subset dominated by FNDS, and the subset not dominated by FNDS. According to the proposed division of labor, it is not necessary to balance the convergence and constrained satisfaction in each subset. To avoid being entrapped in local optima, the proposed algorithm adopts a two-stage strategy to solve CMOPs. In the first stage, the proposed algorithm focuses solely on converging toward the unconstrained Pareto front without considering the constrained satisfaction. In the second stage, the FNDS constraint handling technique is adopted to guide the population converging toward constrained Pareto front effectively. The performance of the proposed algorithm was compared to that of nine state-of-the-art CMOEAs, and the comparison results show that the proposed algorithm performs significantly better on the CF, MW, and LIRCMOP test suites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助徐嘎嘎采纳,获得10
刚刚
刚刚
刚刚
刚刚
舒适的方盒完成签到 ,获得积分10
刚刚
JaneChen发布了新的文献求助10
刚刚
1秒前
qqer完成签到,获得积分10
2秒前
冥王星发布了新的文献求助10
2秒前
Manta完成签到,获得积分10
3秒前
Hello应助执着的觅露采纳,获得30
3秒前
6秒前
6秒前
开心依珊发布了新的文献求助10
6秒前
孟晓晖完成签到 ,获得积分10
6秒前
9秒前
kk完成签到,获得积分10
9秒前
10秒前
djxdjt发布了新的文献求助10
10秒前
jjdeng发布了新的文献求助10
11秒前
orixero应助jimskylxk采纳,获得10
11秒前
今后应助caoyy采纳,获得10
12秒前
尝原完成签到,获得积分10
12秒前
科研通AI6.1应助小明采纳,获得10
12秒前
Aimee发布了新的文献求助30
14秒前
lydia完成签到,获得积分10
15秒前
开心依珊完成签到,获得积分20
15秒前
16秒前
大模型应助Vincent采纳,获得10
18秒前
20秒前
25秒前
大个应助柍踏采纳,获得10
25秒前
26秒前
28秒前
Jasper应助高挑的梦芝采纳,获得10
30秒前
zhangyafei完成签到,获得积分10
30秒前
caoyy发布了新的文献求助10
31秒前
psy完成签到,获得积分10
32秒前
Lucas应助呼斯冷采纳,获得10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771909
求助须知:如何正确求助?哪些是违规求助? 5594239
关于积分的说明 15428487
捐赠科研通 4905096
什么是DOI,文献DOI怎么找? 2639208
邀请新用户注册赠送积分活动 1587085
关于科研通互助平台的介绍 1541964