已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Two-Stage Multi-Objective Evolution Strategy for Constrained Multi-Objective Optimization

数学优化 趋同(经济学) 多目标优化 约束(计算机辅助设计) 人口 计算机科学 帕累托原理 早熟收敛 约束优化 数学 遗传算法 几何学 经济增长 社会学 人口学 经济
作者
Kai Zhang,Zhengyong Xu,Gary G. Yen,Ling Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2022.3202723
摘要

For the past many years, several constrained multiobjective evolutionary algorithms (CMOEAs) have been designed for solving constrained multi-objective optimization problems (CMOPs). In these CMOEAs, some constraint-handling techniques (CHTs) were proposed to balance the convergence and constrained satisfaction, however, they still face some serious challenges, such as premature convergence to the local optimal region and labor-intensive tuning of parameters for a specific CMOP. Furthermore, most of the existing CHTs are derived by solving constrained single-objective optimization. The information hidden from the feasible non-dominated set (FNDS) has not been fully utilized. This study proposed a novel parameter-less constraint handling technique, which divides the entire population into three mutually exclusive subsets dynamically: FNDS, the subset dominated by FNDS, and the subset not dominated by FNDS. According to the proposed division of labor, it is not necessary to balance the convergence and constrained satisfaction in each subset. To avoid being entrapped in local optima, the proposed algorithm adopts a two-stage strategy to solve CMOPs. In the first stage, the proposed algorithm focuses solely on converging toward the unconstrained Pareto front without considering the constrained satisfaction. In the second stage, the FNDS constraint handling technique is adopted to guide the population converging toward constrained Pareto front effectively. The performance of the proposed algorithm was compared to that of nine state-of-the-art CMOEAs, and the comparison results show that the proposed algorithm performs significantly better on the CF, MW, and LIRCMOP test suites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皆可发布了新的文献求助10
刚刚
imkhun1021完成签到,获得积分10
刚刚
1秒前
XudongHou发布了新的文献求助10
2秒前
wen完成签到,获得积分10
4秒前
6秒前
6秒前
桐桐应助123456采纳,获得10
6秒前
6秒前
Orange应助俏皮元珊采纳,获得10
7秒前
BEI发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
FashionBoy应助满意妙梦采纳,获得10
9秒前
走走发布了新的文献求助10
10秒前
lobule发布了新的文献求助10
10秒前
11秒前
11秒前
Why发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
小二郎应助阳光的忆文采纳,获得10
14秒前
14秒前
15秒前
李爱国应助皆可采纳,获得10
15秒前
青柠发布了新的文献求助10
16秒前
123456发布了新的文献求助10
16秒前
16秒前
17秒前
仁爱羊发布了新的文献求助30
18秒前
嘻嘻发布了新的文献求助10
18秒前
Yvoone发布了新的文献求助10
19秒前
科研小天才完成签到,获得积分10
20秒前
23秒前
26秒前
负责如冰完成签到,获得积分10
27秒前
lzx发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599516
求助须知:如何正确求助?哪些是违规求助? 4685187
关于积分的说明 14838060
捐赠科研通 4668727
什么是DOI,文献DOI怎么找? 2538015
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470804