Two-Stage Multi-Objective Evolution Strategy for Constrained Multi-Objective Optimization

数学优化 趋同(经济学) 多目标优化 约束(计算机辅助设计) 人口 计算机科学 帕累托原理 早熟收敛 约束优化 数学 遗传算法 几何学 人口学 社会学 经济 经济增长
作者
Kai Zhang,Zhengyong Xu,Gary G. Yen,Ling Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2022.3202723
摘要

For the past many years, several constrained multiobjective evolutionary algorithms (CMOEAs) have been designed for solving constrained multi-objective optimization problems (CMOPs). In these CMOEAs, some constraint-handling techniques (CHTs) were proposed to balance the convergence and constrained satisfaction, however, they still face some serious challenges, such as premature convergence to the local optimal region and labor-intensive tuning of parameters for a specific CMOP. Furthermore, most of the existing CHTs are derived by solving constrained single-objective optimization. The information hidden from the feasible non-dominated set (FNDS) has not been fully utilized. This study proposed a novel parameter-less constraint handling technique, which divides the entire population into three mutually exclusive subsets dynamically: FNDS, the subset dominated by FNDS, and the subset not dominated by FNDS. According to the proposed division of labor, it is not necessary to balance the convergence and constrained satisfaction in each subset. To avoid being entrapped in local optima, the proposed algorithm adopts a two-stage strategy to solve CMOPs. In the first stage, the proposed algorithm focuses solely on converging toward the unconstrained Pareto front without considering the constrained satisfaction. In the second stage, the FNDS constraint handling technique is adopted to guide the population converging toward constrained Pareto front effectively. The performance of the proposed algorithm was compared to that of nine state-of-the-art CMOEAs, and the comparison results show that the proposed algorithm performs significantly better on the CF, MW, and LIRCMOP test suites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixm发布了新的文献求助10
1秒前
3秒前
研友_VZG7GZ应助务实的犀牛采纳,获得10
4秒前
5秒前
狂野代桃发布了新的文献求助10
8秒前
加菲丰丰应助Anquan采纳,获得30
8秒前
biubiu完成签到,获得积分10
9秒前
茶茶发布了新的文献求助10
9秒前
11秒前
酷波er应助健忘捕采纳,获得10
11秒前
李健应助irisjlj采纳,获得10
13秒前
001完成签到 ,获得积分20
14秒前
sgjj33完成签到,获得积分10
16秒前
情怀应助凝子老师采纳,获得10
17秒前
迪丽盐巴完成签到,获得积分10
18秒前
22秒前
23秒前
合适的致远完成签到,获得积分10
25秒前
小马甲应助sgjj33采纳,获得10
27秒前
所所应助奋斗灵波采纳,获得10
28秒前
29秒前
慌糖完成签到,获得积分10
30秒前
liu完成签到,获得积分10
32秒前
柔弱凡松发布了新的文献求助10
34秒前
34秒前
36秒前
QQQQ发布了新的文献求助20
36秒前
zy完成签到 ,获得积分10
36秒前
坦率若颜发布了新的文献求助10
40秒前
terence应助YYJ25采纳,获得10
41秒前
43秒前
45秒前
45秒前
JianminLuo完成签到 ,获得积分10
46秒前
慌糖发布了新的文献求助10
46秒前
贪玩语蓉完成签到,获得积分10
47秒前
48秒前
heidi发布了新的文献求助10
49秒前
49秒前
CipherSage应助昵称采纳,获得10
49秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851