Two-Stage Multi-Objective Evolution Strategy for Constrained Multi-Objective Optimization

数学优化 趋同(经济学) 多目标优化 约束(计算机辅助设计) 人口 计算机科学 帕累托原理 早熟收敛 约束优化 数学 遗传算法 几何学 经济增长 社会学 人口学 经济
作者
Kai Zhang,Zhengyong Xu,Gary G. Yen,Ling Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2022.3202723
摘要

For the past many years, several constrained multiobjective evolutionary algorithms (CMOEAs) have been designed for solving constrained multi-objective optimization problems (CMOPs). In these CMOEAs, some constraint-handling techniques (CHTs) were proposed to balance the convergence and constrained satisfaction, however, they still face some serious challenges, such as premature convergence to the local optimal region and labor-intensive tuning of parameters for a specific CMOP. Furthermore, most of the existing CHTs are derived by solving constrained single-objective optimization. The information hidden from the feasible non-dominated set (FNDS) has not been fully utilized. This study proposed a novel parameter-less constraint handling technique, which divides the entire population into three mutually exclusive subsets dynamically: FNDS, the subset dominated by FNDS, and the subset not dominated by FNDS. According to the proposed division of labor, it is not necessary to balance the convergence and constrained satisfaction in each subset. To avoid being entrapped in local optima, the proposed algorithm adopts a two-stage strategy to solve CMOPs. In the first stage, the proposed algorithm focuses solely on converging toward the unconstrained Pareto front without considering the constrained satisfaction. In the second stage, the FNDS constraint handling technique is adopted to guide the population converging toward constrained Pareto front effectively. The performance of the proposed algorithm was compared to that of nine state-of-the-art CMOEAs, and the comparison results show that the proposed algorithm performs significantly better on the CF, MW, and LIRCMOP test suites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助cc采纳,获得10
1秒前
李健应助aara采纳,获得10
1秒前
1秒前
文静的匪发布了新的文献求助10
1秒前
Lucas应助ren采纳,获得10
1秒前
奋进的熊完成签到,获得积分10
1秒前
王了了完成签到 ,获得积分10
2秒前
Akim应助小学渣采纳,获得10
2秒前
wqing完成签到,获得积分10
2秒前
shanshan完成签到 ,获得积分10
2秒前
咕咕呱发布了新的文献求助10
2秒前
3秒前
寻359发布了新的文献求助10
4秒前
4秒前
5秒前
丘比特应助小分队采纳,获得10
6秒前
6秒前
科研通AI6应助神勇中道采纳,获得10
6秒前
科研通AI6应助科研渣渣采纳,获得10
7秒前
8秒前
8秒前
8秒前
bkagyin应助咕咕呱采纳,获得10
9秒前
zz发布了新的文献求助10
9秒前
嘎嘎楽发布了新的文献求助30
9秒前
沫沫完成签到 ,获得积分10
9秒前
aa关闭了aa文献求助
10秒前
11秒前
花椰菜应助机智的天奇采纳,获得10
11秒前
搜集达人应助自由采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
11秒前
HTniconico完成签到 ,获得积分10
11秒前
snowwww完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
桐桐应助机灵的一刀采纳,获得10
12秒前
12秒前
在水一方应助1234采纳,获得10
12秒前
YujieJin完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507112
求助须知:如何正确求助?哪些是违规求助? 4602518
关于积分的说明 14481766
捐赠科研通 4536507
什么是DOI,文献DOI怎么找? 2486192
邀请新用户注册赠送积分活动 1468807
关于科研通互助平台的介绍 1441202