Two-Stage Multi-Objective Evolution Strategy for Constrained Multi-Objective Optimization

数学优化 趋同(经济学) 多目标优化 约束(计算机辅助设计) 人口 计算机科学 帕累托原理 早熟收敛 约束优化 数学 遗传算法 几何学 经济增长 社会学 人口学 经济
作者
Kai Zhang,Zhengyong Xu,Gary G. Yen,Ling Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:15
标识
DOI:10.1109/tevc.2022.3202723
摘要

For the past many years, several constrained multiobjective evolutionary algorithms (CMOEAs) have been designed for solving constrained multi-objective optimization problems (CMOPs). In these CMOEAs, some constraint-handling techniques (CHTs) were proposed to balance the convergence and constrained satisfaction, however, they still face some serious challenges, such as premature convergence to the local optimal region and labor-intensive tuning of parameters for a specific CMOP. Furthermore, most of the existing CHTs are derived by solving constrained single-objective optimization. The information hidden from the feasible non-dominated set (FNDS) has not been fully utilized. This study proposed a novel parameter-less constraint handling technique, which divides the entire population into three mutually exclusive subsets dynamically: FNDS, the subset dominated by FNDS, and the subset not dominated by FNDS. According to the proposed division of labor, it is not necessary to balance the convergence and constrained satisfaction in each subset. To avoid being entrapped in local optima, the proposed algorithm adopts a two-stage strategy to solve CMOPs. In the first stage, the proposed algorithm focuses solely on converging toward the unconstrained Pareto front without considering the constrained satisfaction. In the second stage, the FNDS constraint handling technique is adopted to guide the population converging toward constrained Pareto front effectively. The performance of the proposed algorithm was compared to that of nine state-of-the-art CMOEAs, and the comparison results show that the proposed algorithm performs significantly better on the CF, MW, and LIRCMOP test suites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助激情的含巧采纳,获得10
刚刚
sailingluwl完成签到,获得积分10
1秒前
刘松完成签到,获得积分10
1秒前
墨苒发布了新的文献求助10
1秒前
邓帅发布了新的文献求助30
2秒前
彭于彦祖应助11231采纳,获得30
2秒前
jessie发布了新的文献求助10
2秒前
2秒前
2秒前
luohan完成签到,获得积分10
3秒前
CN完成签到,获得积分10
3秒前
刘松发布了新的文献求助10
4秒前
哈哈完成签到 ,获得积分10
4秒前
科目三应助冯宝宝采纳,获得10
4秒前
星辰大海应助落花生采纳,获得10
4秒前
4秒前
绿波电龙发布了新的文献求助10
5秒前
龙飞凤舞完成签到,获得积分0
5秒前
西洲发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
nichts完成签到 ,获得积分10
7秒前
vapour应助开放穆采纳,获得10
8秒前
9秒前
华123完成签到,获得积分10
9秒前
李海翔完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
spark完成签到,获得积分20
10秒前
yizhiGao完成签到,获得积分10
10秒前
Yatagarasu完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
奋斗朋友完成签到 ,获得积分10
11秒前
需要论文完成签到,获得积分10
12秒前
12秒前
轻松的水之完成签到,获得积分20
12秒前
mila完成签到,获得积分10
12秒前
wail完成签到,获得积分20
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503