Identification of ferroptosis-associated biomarkers for the potential diagnosis and treatment of postmenopausal osteoporosis

列线图 医学 接收机工作特性 基因 生物信息学 计算生物学 肿瘤科 内科学 生物 遗传学
作者
Yunxiang Hu,Jun Han,Shengqiang Ding,Sanmao Liu,Hong Wang
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:13 被引量:40
标识
DOI:10.3389/fendo.2022.986384
摘要

Objective Postmenopausal osteoporosis (PMOP) is one of the most commonly occurring conditions worldwide and is characterized by estrogen deficiency as well as persistent calcium loss with age. The aim of our study was to identify significant ferroptosis-associated biomarkers for PMOP. Methods and materials We obtained our training dataset from the Gene Expression Omnibus (GEO) database using GSE56815 expression profiling data. Meanwhile, we extracted ferroptosis-associated genes for further analysis. Differentially expressed ferroptosis-associated genes (DEFAGs) between OP patients and normal controls were selected using the “limma” package. We established a ferroptosis-associated gene signature using training models, specifically, random forest (RF) and support vector machine (SVM) models. It was further validated in another dataset (GSE56814) which also showed a high AUC: 0.98, indicating high diagnostic value. Using consensus clustering, the OP patient subtypes were identified. A ferroptosis associated gene (FAG)-Scoring scheme was developed by PCA. The important candidate genes associated with OP were also compared between different ferrclusters and geneclusters. Results There were significant DEFAGs acquired, of which five (HMOX1, HAMP, LPIN1, MAP3K5, FLT3) were selected for establishing a ferroptosis-associated gene signature. Analyzed from the ROC curve, our established RF model had a higher AUC value than the SVM model (RF model AUC:1.00). Considering these results, the established RF model was chosen to be the most appropriate training model. Later, based on the expression levels of the five DEFAGs, a clinical application nomogram was established. The OP patients were divided into two subtypes (ferrcluster A, B and genecluster A, B, respectively) according to the consensus clustering method based on DEFAGs and differentially expressed genes (DEGs). Ferrcluster B and genecluster B had higher ferroptosis score than ferrcluster A and genecluster A, respectively. The expression of COL1A1 gene was significantly higher in ferrcluster B and gencluster B compared with ferrcluster A and gencluster A, respectively, while there is no statistical difference in term of VDR gene, COL1A2 genes, and PTH gene expressions between ferrcluster A and B, together with gencluster A and B. Conclusions On the basis of five explanatory variables (HMOX1, HAMP, LPIN1, MAP3K5 and FLT3), we developed a diagnostic ferroptosis-associated gene signature and identified two differently categorized OP subtypes that may potentially be applied for the early diagnosis and individualized treatment of PMOP. The ER gene, VDR gene, IL-6 gene, COL1A1 and COL1A2 genes, and PTH gene are important candidate gene of OP, however, more studies are still anticipated to further elucidate the relationship between these genes and ferroptosis in OP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001完成签到,获得积分10
1秒前
2秒前
枫糖叶落完成签到,获得积分10
7秒前
weijie完成签到,获得积分10
11秒前
yyy完成签到,获得积分20
15秒前
chiazy完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
甜乎贝贝完成签到 ,获得积分10
19秒前
梯度完成签到,获得积分10
20秒前
现代的凝莲完成签到,获得积分10
21秒前
loga80完成签到,获得积分0
22秒前
早安完成签到 ,获得积分10
22秒前
薄荷味的猫完成签到 ,获得积分10
23秒前
美人鱼听不了超声波完成签到 ,获得积分10
23秒前
溪泉完成签到,获得积分10
28秒前
早睡早起身体好Q完成签到 ,获得积分10
28秒前
30秒前
30秒前
田様应助科研通管家采纳,获得10
30秒前
路灯下的小伙完成签到 ,获得积分10
30秒前
bener完成签到,获得积分10
34秒前
活力的妙之完成签到 ,获得积分10
35秒前
liu完成签到 ,获得积分10
36秒前
狂野凝竹完成签到,获得积分10
40秒前
鹿璟璟完成签到 ,获得积分10
40秒前
小葡萄完成签到 ,获得积分10
41秒前
火顺丁完成签到,获得积分10
41秒前
刘亮亮完成签到,获得积分10
42秒前
跳跃的语柔完成签到 ,获得积分10
45秒前
陈M雯完成签到 ,获得积分10
46秒前
闲人颦儿完成签到,获得积分0
47秒前
沫柠完成签到 ,获得积分10
48秒前
心系天下完成签到 ,获得积分10
49秒前
SASI完成签到 ,获得积分10
51秒前
胡萝卜完成签到 ,获得积分10
53秒前
阿策完成签到,获得积分10
53秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
55秒前
nn完成签到,获得积分10
56秒前
wei完成签到 ,获得积分10
56秒前
yuyuyuyuyuyuyu完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685721
关于积分的说明 14838888
捐赠科研通 4673965
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067