Collaborative Apportionment Noise-Based Soft Sensor Framework

计算机科学 降噪 噪音(视频) 聚类分析 理论(学习稳定性) 软传感器 模式识别(心理学) 人工智能 卷积神经网络 超参数 降维 数据挖掘 机器学习 过程(计算) 图像(数学) 操作系统
作者
Shiwei Gao,Qingsong Zhang,Ran Tian,Zhongyu Ma,Yanxing Liu,Ziqian Hao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:15
标识
DOI:10.1109/tim.2022.3200088
摘要

Recently, feature extraction based soft sensor techniques have developed rapidly in the control, optimization, and detection processes of industrial production. However, the raw data obtained from the complex industrial processes are often contaminated by noise, which significantly impacts the results of soft sensor models. We introduce the collaborative apportionment noise (CAN) method based on the density peaks clustering (DPC) theory, based on which, we have proposed a CAN-based soft sensor framework (CAN-SSF) and designed an example model called the CAN-based convolutional neural networks (CAN-CNN) model for industry data prediction. In the CAN method, we determined the magnitude and direction of the noise by the bias degree and deviation of the data. And then the noise is collaboratively apportioned by the credibility degree of the data. Finally, to further explore the feasibility of the CAN method, we added a hyperparameter called reduction degree and conducted two groups of independent experiments for the example model CAN-CNN. The results have shown that the adaptability and stability of the CAN method are higher than the traditional wavelet transform denoising (WT) and denoising autoencoders (DAE). In addition, the prediction performance of the proposed CAN-SSF is better than the traditional CNN and Stacked autoencoders (SAE) models to solve the industrial soft sensor problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
从前慢完成签到,获得积分10
刚刚
刚刚
秦QQ完成签到 ,获得积分20
刚刚
xyh发布了新的文献求助30
刚刚
ybigwhite发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
王迪迪完成签到,获得积分10
1秒前
2秒前
勤劳沛柔发布了新的文献求助10
2秒前
zz完成签到,获得积分10
2秒前
那咋了发布了新的文献求助10
2秒前
2秒前
2秒前
bkagyin应助phil采纳,获得10
3秒前
乐乐应助大帅采纳,获得50
3秒前
Manuscript发布了新的文献求助10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
王迪迪发布了新的文献求助10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
充电宝应助洪星采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得30
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
slim完成签到 ,获得积分10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
实验室应助科研通管家采纳,获得30
4秒前
keyan应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848