Collaborative Apportionment Noise-Based Soft Sensor Framework

计算机科学 降噪 噪音(视频) 聚类分析 理论(学习稳定性) 软传感器 模式识别(心理学) 人工智能 卷积神经网络 超参数 降维 数据挖掘 机器学习 过程(计算) 图像(数学) 操作系统
作者
Shiwei Gao,Qingsong Zhang,Ran Tian,Zhongyu Ma,Yanxing Liu,Ziqian Hao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:15
标识
DOI:10.1109/tim.2022.3200088
摘要

Recently, feature extraction based soft sensor techniques have developed rapidly in the control, optimization, and detection processes of industrial production. However, the raw data obtained from the complex industrial processes are often contaminated by noise, which significantly impacts the results of soft sensor models. We introduce the collaborative apportionment noise (CAN) method based on the density peaks clustering (DPC) theory, based on which, we have proposed a CAN-based soft sensor framework (CAN-SSF) and designed an example model called the CAN-based convolutional neural networks (CAN-CNN) model for industry data prediction. In the CAN method, we determined the magnitude and direction of the noise by the bias degree and deviation of the data. And then the noise is collaboratively apportioned by the credibility degree of the data. Finally, to further explore the feasibility of the CAN method, we added a hyperparameter called reduction degree and conducted two groups of independent experiments for the example model CAN-CNN. The results have shown that the adaptability and stability of the CAN method are higher than the traditional wavelet transform denoising (WT) and denoising autoencoders (DAE). In addition, the prediction performance of the proposed CAN-SSF is better than the traditional CNN and Stacked autoencoders (SAE) models to solve the industrial soft sensor problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助十五采纳,获得10
刚刚
Yzh完成签到,获得积分10
刚刚
smile发布了新的文献求助10
1秒前
Michael Zhang完成签到 ,获得积分10
1秒前
邓年念发布了新的文献求助10
2秒前
云那边的山发布了新的文献求助300
3秒前
英姑应助EMMA采纳,获得10
4秒前
浮游应助xxx采纳,获得10
5秒前
深情安青应助小王采纳,获得30
5秒前
AIKaikai发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
怕孤独的聪展完成签到,获得积分10
11秒前
12秒前
12秒前
李健的小迷弟应助Lisa田采纳,获得20
12秒前
12秒前
邓年念完成签到,获得积分10
15秒前
15秒前
Windsea完成签到,获得积分10
15秒前
李健应助苟文锋采纳,获得10
16秒前
何雨航发布了新的文献求助10
16秒前
17秒前
17秒前
Lucas应助lily采纳,获得10
18秒前
18秒前
lhr关闭了lhr文献求助
18秒前
19秒前
20秒前
21秒前
隐形曼青应助科研进化中采纳,获得10
21秒前
顶上之战发布了新的文献求助30
22秒前
千早爱音应助123采纳,获得10
24秒前
24秒前
chenmeimei2012完成签到 ,获得积分10
25秒前
25秒前
John发布了新的文献求助10
26秒前
27秒前
苟文锋发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452