亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Collaborative Apportionment Noise-Based Soft Sensor Framework

计算机科学 降噪 噪音(视频) 聚类分析 理论(学习稳定性) 软传感器 模式识别(心理学) 人工智能 卷积神经网络 超参数 降维 数据挖掘 机器学习 过程(计算) 操作系统 图像(数学)
作者
Shiwei Gao,Qingsong Zhang,Ran Tian,Zhongyu Ma,Yanxing Liu,Ziqian Hao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:15
标识
DOI:10.1109/tim.2022.3200088
摘要

Recently, feature extraction based soft sensor techniques have developed rapidly in the control, optimization, and detection processes of industrial production. However, the raw data obtained from the complex industrial processes are often contaminated by noise, which significantly impacts the results of soft sensor models. We introduce the collaborative apportionment noise (CAN) method based on the density peaks clustering (DPC) theory, based on which, we have proposed a CAN-based soft sensor framework (CAN-SSF) and designed an example model called the CAN-based convolutional neural networks (CAN-CNN) model for industry data prediction. In the CAN method, we determined the magnitude and direction of the noise by the bias degree and deviation of the data. And then the noise is collaboratively apportioned by the credibility degree of the data. Finally, to further explore the feasibility of the CAN method, we added a hyperparameter called reduction degree and conducted two groups of independent experiments for the example model CAN-CNN. The results have shown that the adaptability and stability of the CAN method are higher than the traditional wavelet transform denoising (WT) and denoising autoencoders (DAE). In addition, the prediction performance of the proposed CAN-SSF is better than the traditional CNN and Stacked autoencoders (SAE) models to solve the industrial soft sensor problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fladen发布了新的文献求助200
6秒前
领导范儿应助cqhecq采纳,获得30
15秒前
Wfmmm完成签到,获得积分10
21秒前
1分钟前
完美世界应助无辜笑容采纳,获得10
1分钟前
cqhecq发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
香蕉觅云应助cqhecq采纳,获得30
2分钟前
Akim应助玄音采纳,获得10
2分钟前
碳酸芙兰完成签到,获得积分10
2分钟前
2分钟前
alex_zhao完成签到,获得积分10
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
完美世界应助无辜笑容采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
cqhecq发布了新的文献求助30
3分钟前
大模型应助balabala采纳,获得10
3分钟前
charih完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
balabala发布了新的文献求助10
3分钟前
fladen发布了新的文献求助200
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
李健应助andrele采纳,获得10
4分钟前
高大的蜡烛完成签到,获得积分20
4分钟前
4分钟前
4分钟前
balabala完成签到,获得积分20
4分钟前
4分钟前
4分钟前
kk发布了新的文献求助10
4分钟前
balabala关注了科研通微信公众号
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111228
捐赠科研通 3234093
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264