An Automated Learning Framework With Limited and Cross-Domain Data for Traffic Equipment Detection From Surveillance Videos

计算机科学 加权 领域(数学分析) 人工智能 域适应 深度学习 互联网 目标检测 分类器(UML) 方案(数学) 计算机视觉 机器学习 数据挖掘 模式识别(心理学) 医学 数学分析 数学 万维网 放射科
作者
Wei Zhou,Yuqing Liu,Chen Wang,Yunfei Zhan,Yulu Dai,Ruiyu Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24891-24903 被引量:8
标识
DOI:10.1109/tits.2022.3195509
摘要

Traffic equipment detection from surveillance videos is of practical significance for temporary traffic element update in high-precision maps. However, there is little relative research developed due to limited labeled data. Based on a detector dubbed Faster R-CNN, we propose an automated learning framework that utilizes easy-to-obtain Internet images containing traffic equipment to acquire the capability of detecting traffic equipment from surveillance videos. In this framework, an appearance weighting module using a comprehensive feature aggregation method is designed to allow Faster R-CNN to converge and generalize quickly by taking limited data (i.e., less than 30 images per class) as input. To further address the cross-domain issue brought by the domain gap between the Internet images and the surveillance video frames, a domain adaptation learning scheme is developed, which aims to align the two domains and guide the framework to learn more robust domain-invariant features. Experimental results show that both the appearance weighting module and the domain adaptation learning scheme could bring a great performance improvement. Moreover, the combination of the two results in a state-of-the-art performance (mAP of 44.6%) even if only 30 training images per class are provided. To sum up, the proposed framework is suitable for traffic equipment detection from surveillance videos and provides an inspiration for other detection tasks with limited and cross-domain data, allowing humans to reduce their efforts and time required for arduous data collection and annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助qq采纳,获得10
刚刚
阿昔完成签到,获得积分10
1秒前
Wrong完成签到,获得积分10
1秒前
缥缈小夏完成签到 ,获得积分10
1秒前
1秒前
科研通AI6应助到灯塔去采纳,获得10
2秒前
科目三应助缓慢语雪采纳,获得30
2秒前
上官若男应助pm采纳,获得30
2秒前
3秒前
小蘑菇应助Nancy采纳,获得10
3秒前
4秒前
kk完成签到 ,获得积分10
4秒前
易烊千玺老婆完成签到,获得积分10
4秒前
4秒前
迅速的小鸽子完成签到 ,获得积分10
4秒前
4秒前
kingwill应助化学采纳,获得20
4秒前
lll发布了新的文献求助10
5秒前
贺贺完成签到,获得积分10
6秒前
6秒前
6秒前
丁浩伦发布了新的文献求助30
6秒前
liuxl完成签到,获得积分10
6秒前
Destiny完成签到,获得积分10
7秒前
酷波er应助wangqiqi采纳,获得10
7秒前
jy完成签到,获得积分10
7秒前
nnnn发布了新的文献求助10
7秒前
甜甜发布了新的文献求助10
8秒前
8秒前
无辜的惜寒完成签到,获得积分10
8秒前
Ton汤发布了新的文献求助10
8秒前
9秒前
虎牙发布了新的文献求助10
10秒前
qbx完成签到,获得积分10
10秒前
胡思完成签到,获得积分10
10秒前
Nature完成签到,获得积分10
11秒前
leon发布了新的文献求助10
11秒前
CodeCraft应助海边灯采纳,获得10
12秒前
Lucas应助顾化蛹采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585299
求助须知:如何正确求助?哪些是违规求助? 4002043
关于积分的说明 12389019
捐赠科研通 3678147
什么是DOI,文献DOI怎么找? 2027106
邀请新用户注册赠送积分活动 1060652
科研通“疑难数据库(出版商)”最低求助积分说明 947170