An Automated Learning Framework With Limited and Cross-Domain Data for Traffic Equipment Detection From Surveillance Videos

计算机科学 加权 领域(数学分析) 人工智能 域适应 深度学习 互联网 目标检测 分类器(UML) 方案(数学) 计算机视觉 机器学习 数据挖掘 模式识别(心理学) 医学 数学分析 数学 万维网 放射科
作者
Wei Zhou,Yuqing Liu,Chen Wang,Yunfei Zhan,Yulu Dai,Ruiyu Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24891-24903 被引量:8
标识
DOI:10.1109/tits.2022.3195509
摘要

Traffic equipment detection from surveillance videos is of practical significance for temporary traffic element update in high-precision maps. However, there is little relative research developed due to limited labeled data. Based on a detector dubbed Faster R-CNN, we propose an automated learning framework that utilizes easy-to-obtain Internet images containing traffic equipment to acquire the capability of detecting traffic equipment from surveillance videos. In this framework, an appearance weighting module using a comprehensive feature aggregation method is designed to allow Faster R-CNN to converge and generalize quickly by taking limited data (i.e., less than 30 images per class) as input. To further address the cross-domain issue brought by the domain gap between the Internet images and the surveillance video frames, a domain adaptation learning scheme is developed, which aims to align the two domains and guide the framework to learn more robust domain-invariant features. Experimental results show that both the appearance weighting module and the domain adaptation learning scheme could bring a great performance improvement. Moreover, the combination of the two results in a state-of-the-art performance (mAP of 44.6%) even if only 30 training images per class are provided. To sum up, the proposed framework is suitable for traffic equipment detection from surveillance videos and provides an inspiration for other detection tasks with limited and cross-domain data, allowing humans to reduce their efforts and time required for arduous data collection and annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬菇头发布了新的文献求助10
刚刚
1秒前
良辰应助清脆的白开水采纳,获得10
1秒前
1秒前
孙永胜发布了新的文献求助10
2秒前
学习人完成签到,获得积分20
4秒前
刘松发布了新的文献求助10
5秒前
5秒前
木木完成签到 ,获得积分10
6秒前
happyrrc发布了新的文献求助10
6秒前
烟花应助ztt采纳,获得10
8秒前
物语完成签到 ,获得积分10
8秒前
孙永胜完成签到,获得积分10
9秒前
烟花应助1234采纳,获得10
9秒前
孔大漂亮完成签到,获得积分10
9秒前
10秒前
Bake完成签到,获得积分10
10秒前
12秒前
14秒前
14秒前
大萱完成签到 ,获得积分10
16秒前
稳重的一曲完成签到,获得积分10
16秒前
踏实天空应助舒心的南珍采纳,获得10
16秒前
在水一方应助加油采纳,获得10
19秒前
公孙朝雨发布了新的文献求助10
19秒前
geold完成签到,获得积分10
20秒前
慕青应助dlfg采纳,获得10
20秒前
宋昊完成签到,获得积分10
21秒前
21秒前
领导范儿应助lidd采纳,获得10
22秒前
咚咚咚完成签到,获得积分10
22秒前
共享精神应助黙宇循光采纳,获得10
23秒前
24秒前
CodeCraft应助贤惠的故事采纳,获得10
24秒前
24秒前
25秒前
1234发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079