An Automated Learning Framework With Limited and Cross-Domain Data for Traffic Equipment Detection From Surveillance Videos

计算机科学 加权 领域(数学分析) 人工智能 域适应 深度学习 互联网 目标检测 分类器(UML) 方案(数学) 计算机视觉 机器学习 数据挖掘 模式识别(心理学) 医学 数学分析 数学 万维网 放射科
作者
Wei Zhou,Yuqing Liu,Chen Wang,Yunfei Zhan,Yulu Dai,Ruiyu Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24891-24903 被引量:8
标识
DOI:10.1109/tits.2022.3195509
摘要

Traffic equipment detection from surveillance videos is of practical significance for temporary traffic element update in high-precision maps. However, there is little relative research developed due to limited labeled data. Based on a detector dubbed Faster R-CNN, we propose an automated learning framework that utilizes easy-to-obtain Internet images containing traffic equipment to acquire the capability of detecting traffic equipment from surveillance videos. In this framework, an appearance weighting module using a comprehensive feature aggregation method is designed to allow Faster R-CNN to converge and generalize quickly by taking limited data (i.e., less than 30 images per class) as input. To further address the cross-domain issue brought by the domain gap between the Internet images and the surveillance video frames, a domain adaptation learning scheme is developed, which aims to align the two domains and guide the framework to learn more robust domain-invariant features. Experimental results show that both the appearance weighting module and the domain adaptation learning scheme could bring a great performance improvement. Moreover, the combination of the two results in a state-of-the-art performance (mAP of 44.6%) even if only 30 training images per class are provided. To sum up, the proposed framework is suitable for traffic equipment detection from surveillance videos and provides an inspiration for other detection tasks with limited and cross-domain data, allowing humans to reduce their efforts and time required for arduous data collection and annotation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhe完成签到,获得积分10
3秒前
jnoker完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
忘崽子小拳头完成签到,获得积分10
7秒前
Yongander发布了新的文献求助10
8秒前
Arueliano完成签到,获得积分10
14秒前
清风完成签到 ,获得积分10
15秒前
兴奋小丸子完成签到,获得积分10
17秒前
世界末末日完成签到 ,获得积分10
18秒前
小马甲应助hello采纳,获得10
18秒前
默默灭绝完成签到 ,获得积分10
19秒前
莫慌完成签到 ,获得积分10
20秒前
发嗲的含芙完成签到,获得积分10
20秒前
Wonder完成签到,获得积分10
20秒前
22秒前
22秒前
gxmu6322完成签到,获得积分10
24秒前
熊雅完成签到,获得积分10
24秒前
24秒前
小z完成签到 ,获得积分10
24秒前
15919229415完成签到,获得积分10
25秒前
不能当饭吃完成签到,获得积分10
25秒前
传统的复天完成签到,获得积分10
26秒前
sin完成签到,获得积分10
27秒前
小邸发布了新的文献求助10
27秒前
27秒前
柠檬加盐发布了新的文献求助10
28秒前
今后应助xiuxiu125采纳,获得10
29秒前
乐观健柏完成签到,获得积分10
30秒前
WHB完成签到,获得积分10
31秒前
hello发布了新的文献求助10
31秒前
喜悦的天钰完成签到,获得积分10
33秒前
NexusExplorer应助柠檬加盐采纳,获得10
34秒前
yu完成签到 ,获得积分10
34秒前
eazin完成签到 ,获得积分10
35秒前
斯文败类应助dll采纳,获得10
36秒前
36秒前
邱佩群完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294178
求助须知:如何正确求助?哪些是违规求助? 4444140
关于积分的说明 13832167
捐赠科研通 4328118
什么是DOI,文献DOI怎么找? 2375950
邀请新用户注册赠送积分活动 1371278
关于科研通互助平台的介绍 1336386