摘要
Journal of Food Processing and PreservationVolume 46, Issue 11 e16986 ORIGINAL ARTICLE Effect of UV-C treatments on quality and browning-related enzyme activity of fresh-cut eggplant (Solanum melongena L.) during cold storage María L. Lemos, María L. Lemos orcid.org/0000-0002-6781-9788 Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, ArgentinaSearch for more papers by this authorDiego R. Gutiérrez, Diego R. Gutiérrez orcid.org/0000-0003-3105-467X Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, ArgentinaSearch for more papers by this authorMariana J. Farías, Mariana J. Farías orcid.org/0000-0001-5865-3627 Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, ArgentinaSearch for more papers by this authorSilvia del C. Rodríguez, Corresponding Author Silvia del C. Rodríguez [email protected] orcid.org/0000-0002-4564-1536 Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina Correspondence Silvia del C. Rodríguez, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET-Universidad Nacional de Santiago del Estero (UNSE), Ruta 9 Km 1125, El Zanjón (CP 4206), Santiago del Estero, Argentina. Email: [email protected]Search for more papers by this author María L. Lemos, María L. Lemos orcid.org/0000-0002-6781-9788 Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, ArgentinaSearch for more papers by this authorDiego R. Gutiérrez, Diego R. Gutiérrez orcid.org/0000-0003-3105-467X Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, ArgentinaSearch for more papers by this authorMariana J. Farías, Mariana J. Farías orcid.org/0000-0001-5865-3627 Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, ArgentinaSearch for more papers by this authorSilvia del C. Rodríguez, Corresponding Author Silvia del C. Rodríguez [email protected] orcid.org/0000-0002-4564-1536 Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina Instituto de Ciencia y Tecnología de Alimentos (ICYTA), Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina Correspondence Silvia del C. Rodríguez, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET-Universidad Nacional de Santiago del Estero (UNSE), Ruta 9 Km 1125, El Zanjón (CP 4206), Santiago del Estero, Argentina. Email: [email protected]Search for more papers by this author First published: 10 August 2022 https://doi.org/10.1111/jfpp.16986 María L. Lemos and Diego R. Gutiérrez equally contributed in the present work. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The effect of UV-C (1, 2, 5, and 10 kJ/m2) on sensory attributes, browning index (BI), ascorbic acid (AA), total phenolic compounds, and browning-related enzymes (i.e., polyphenol oxidase, PPO; phenylalanine ammonia lyase, PAL) of fresh-cut eggplants throughout 10 days at 4°C was studied. Untreated samples were used as control. Treatments with 5 and 10 kJ/m2 presented higher values of PPO activity and BI, with a loss of 50% and 30% of AA and phenols compared with the control, and sensory quality fewer than 4 days. In contrast, 1 and 2 kJ/m2 did not affect PAL activity and 1 kJ/m2 showed sensory acceptance for at least 6 days, with significantly low BI values and PPO activity, and higher phenol and AA content, compared with the other treatments. Therefore, 1 kJ/m2 could be an effective technology to maintain quality and delay the browning of fresh-cut eggplants. Novelty impact statement Enzymatic browning is the main factor limiting the shelf life of fresh-cut eggplants. Therefore, to reduce this problem, the effect of UV-C radiation on the quality of this vegetable was studied. The dose of 1 kJ/m2 had a beneficial impact on the reduction of enzymatic browning since it induced the least increase in PPO activity, the highest retention of AA and total phenols, and not affected PAL activity. CONFLICT OF INTEREST The authors declare that they have no conflict of interest. Open Research DATA AVAILABILITY STATEMENT The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions. REFERENCES Adetuyi, F. O., Karigidi, K. O., & Akintimehin, E. S. (2020). Effect of postharvest UV-C treatments on the bioactive components, antioxidant and inhibitory properties of clerodendrum volubile leaves. Journal of the Saudi Society of Agricultural Sciences, 19(1), 7–13. https://doi.org/10.1016/j.jssas.2018.03.005 Ali, A., Yeoh, W. K., Forney, C., & Siddiqui, M. W. (2017). Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Critical Reviews in Food Science and Nutrition, 58, 2632–2649. https://doi.org/10.1080/10408398.2017.1339180 Alothman, M., Bhat, R., & Karim, A. A. (2009). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 10(4), 512–516. https://doi.org/10.1016/j.ifset.2009.03.004 Artés, F., & Allende, A. (2015). Processing lines and alternative preservation techniques to prolong the shelf-life of minimally fresh processed to pro techniques leafy vegetables. European Journal of Horticultural Science, 70(5), 231–245. Artés-Hernández, F., Robles, P. A., Gómez, P. A., Tomás-Callejas, A., & Artés, F. (2010). Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest Biology and Technology, 55, 114–120. https://doi.org/10.1016/j.postharvbio.2009.09.002 Bal, L. M., Kar, A., Satya, S., & Naik, S. N. (2011). Kinetics of colour change of bamboo shoot slices during microwave drying. International Journal Food Science and Technology, 46, 827–833. https://doi.org/10.1111/j.1365-2621.2011.02553.x Barbagallo, R. N., Chisari, M., & Caputa, G. (2012). Effects of calcium citrate and ascorbate as inhibitors of browning and softening in minimally processed 'Birgah' eggplants. Postharvest Biology and Technology, 73, 107–114. https://doi.org/10.1016/j.postharvbio.2012.06.006 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I., & Periago, M. J. (2012). The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49, 296–302. https://doi.org/10.1016/j.foodres.2012.07.018 Chen, C., Hu, W., He, Y., Jiang, A., & Zhang, R. (2016). Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biology and Technology, 111, 126–131. https://doi.org/10.1016/j.postharvbio.2015.08.005 Chen, X., Ren, L., Li, M., Qian, J., Fan, J., & Du, B. (2017). Effects of clove essential oil and eugenol on quality and browning control of fresh-cut lettuce. Food Chemistry, 214, 432–439. https://doi.org/10.1016/j.foodchem.2016.07.101 Concellón, A., Añón, M. C., & Chaves, A. R. (2004). Characterization and changes in polyphenol oxidase from eggplant fruit (Solanum melongena L.) during storage at low temperature. Food Chemistry, 88, 17–24. https://doi.org/10.1016/j.foodchem.2004.01.017 Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artéz-Hernández, F. (2022). Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth. Food, 11, 653. https://doi.org/10.3390/foods11050653 Duarte-Sierra, A., Charles, M. T., & Arul, J. (2019). UV-C Hormesis: A means of controlling diseases and delaying senescence in fresh fruits and vegetables during storage. In Postharvest pathology of fresh horticultural produce (pp. 539–594). CRC Press. https://doi.org/10.1201/9781315209180-17 Francis, G. A., Gallone, A., Nychas, G. J., Sofos, J. N., Colelli, G., Amodio, M. L., & Spano, G. (2012). Factors affecting quality and safety of fresh-cut produce. Critical Reviews in Food Science and Nutrition, 52, 595–610. https://doi.org/10.1080/10408398.2010.503685 Ganapathy, G., Keerthi, D., Nair, R. A., & Pillai, P. (2016). Correlation of phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) activities to phenolics and curcuminoid content in ginger and its wild congener, Zingiber zerumbet following Pythium myriotylum infection. European Journal of Plant Pathology, 145(4), 1–9. https://doi.org/10.1007/s10658-016-0865-2 Gómez, P. L., Alzamora, S. M., Castro, M. A., & Salvatori, D. M. (2010). Effect of ultraviolet-C light dose on quality of cut-apple: Microorganism, color and compression behavior. Journal of Food Engineering, 98(1), 60–70. https://doi.org/10.1016/j.jfoodeng.2009.12.008 González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A. A., & Ayala-Zavala, J. F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72, 197–202. https://doi.org/10.1111/j.1750-3841.2007.00295.x Graca, A., Salazar, M., Quintas, C., & Nunes, C. (2013). Low dose UV-C illumination as an eco-innovative disinfection system on minimally processed apples. Postharvest Biology and Technology, 85, 1–7. https://doi.org/10.1016/j.postharvbio.2013.04.013 Guerrero, R. F., Puertas, B., Jiménez, M. J., Cacho, J., & Cantos-Villar, E. (2010). Monitoring the process to obtain red wine enriched in resveratrol and piceatannol without quality loss. Food Chemistry, 122, 195–202. https://doi.org/10.1016/j.foodchem.2010.02.057 Gutiérrez, D. R., Char, C., Escalona, V. H., Chaves, A. R., & Rodríguez, S. D. C. (2015). Application of UV-C radiation in the conservation of minimally processed rocket (Eruca sativa mill.). Journal of Food Processing and Preservation, 39(6), 3117–3127. https://doi.org/10.1111/jfpp.12577 Gutiérrez, D. R., Chaves, A. R., & Rodríguez, S. D. C. (2016). Use of UV-C and gaseous ozone as sanitizing agents for keeping the quality of fresh-cut rocket (Eruca sativa mill.). Journal of Food Processing and Preservation, 41, e12968. https://doi.org/10.1111/jfpp.12968 Gutiérrez, D. R., Chaves, A. R., & Rodríguez, S. D. C. (2018). UV-C and ozone treatment influences on the antioxidant capacity and antioxidant system of minimally processed rocket (Eruca sativa mill.). Postharvest Biology and Technology, 138, 107–113. https://doi.org/10.1016/j.postharvbio.2017.12.014 Huang, H., Ge, Z., Limwachiranon, J., Li, L., Li, W., & Luo, Z. (2017). UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biology and Technology, 128, 105–111. https://doi.org/10.1016/j.postharvbio.2017.02.010 Hussain, P. R., Omeera, A., Suradkar, P. P., & Dar, M. A. (2014). Effect of combination treatment of gamma irradiation and ascorbic acid on physicochemical and microbial quality of minimally processed eggplant (Solanum melongena L.). Radiation Physics and Chemistry, 103, 131–141. https://doi.org/10.1016/j.radphyschem.2014.05.063 Kampfenkel, K., Montagu, M. V., & Inzé, D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 22(1), 165–167. https://doi.org/10.1006/abio.1995.1127 Lante, A., Tinello, F., & Nicoletto, M. (2016). UV-A light treatment for controlling enzymatic browning of fresh-cut fruits. Innovative Food Science & Emerging Technologies, 34, 141–147. https://doi.org/10.1016/j.ifset.2015.12.029 Lemoine, M. L., Chaves, A. R., & Martínez, G. A. (2010). Influence of combined hot air and UV-C treatment on the antioxidant system of minimally processed broccoli (Brassica oleracea L. var. Italica). LWT-Food Science and Technology, 43(9), 1313–1319. https://doi.org/10.1016/j.lwt.2010.05.011 Li, H., Deng, Z., Zhu, H., Hu, C., Liu, R., Young, J. C., & Tsao, R. (2012). Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International, 46, 250–259. https://doi.org/10.1016/j.foodres.2011.12.014 Li, S. T., Lasekan, O., Adzahan, N. M., & Hashim, N. (2016). The effect of combinations of UV-C exposure with ascorbate and calcium chloride dips on the enzymatic activities and total phenolic content of minimally processed yam slices. Postharvest Biology and Technology, 120, 138–144. https://doi.org/10.1016/j.postharvbio.2016.06.008 Liu, C. H., Cai, L. Y., Lu, X. Y., Han, X. X., & Ying, T. J. (2012). Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. Journal of Integrative Agriculture, 11(1), 159–165. https://doi.org/10.1016/S1671-2927(12)60794-9 Lu, Y., Zhang, J., Wang, X., Lin, Q., Liu, W., Xie, X., & Guan, W. (2016). Effects of UV-C irradiation on the physiological and antioxidant responses of button mushrooms (Agaricus bisporus) during storage. International Journal of Food Science & Technology, 51(6), 1502–1508. https://doi.org/10.1111/ijfs.13100 Luna, M. C., Tudela, J. A., Tomás-Barberán, F. A., & Gil, M. I. (2016). Modified atmosphere (MA) prevents browning of fresh-cut romaine lettuce through multi-target effects related to phenolic metabolism. Postharvest Biology and Technology, 119, 84–93. https://doi.org/10.1016/j.postharvbio.2016.05.001 Luo, Z., Wang, Y., Jiang, L., & Xu, X. (2015). Effect of nano-CaCO3-LDPE packaging on quality and browning of fresh-cut yam. LWT-Food Science and Technology, 60, 1155–1161. https://doi.org/10.1016/j.lwt.2014.09.021 Manzocco, L., Da Pieve, S., Bertolini, A., Bartolomeoli, I., Maifreni, M., Vianello, A., & Nicoli, M. C. (2011). Surface decontamination of fresh-cut apple by UV-C light exposure: Effects on structure, colour and sensory properties. Postharvest Biology and Technology, 61, 165–171. https://doi.org/10.1016/j.postharvbio.2011.03.003 Manzocco, L., Quarta, B., & Dri, A. (2009). Polyphenoloxidase inactivation by light exposure in model systems and apple derivatives. Innovative Food Science & Emerging Technologies, 10, 506–511. https://doi.org/10.1016/j.ifset.2009.02.004 Martínez-Hernández, G. B., Gómez, P. A., Pradas, I., Artés, F., & Artés-Hernández, F. (2011). Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut Bimi broccoli. Postharvest Biology and Technology, 62, 327–337. https://doi.org/10.1016/j.postharvbio.2011.06.015 Murata, M., Tsurutani, M., Hagiwara, S., & Homma, S. (1997). Subcellular location of polyphenol oxidase in apples. Bioscience, Biotechnology, and Biochemistry, 61(9), 1495–1499. https://doi.org/10.1271/bbb.61.1495 Mustafa, M. A., Ali, A., Seymour, G., & Tucker, G. (2015). The role of the ubiquitous phenolic compound 'salicylic acid' in chilling tolerance of carambola. Acta Horticulturae, 1079(9), 679–683. Olaiya, C. O., Karigidi, K. O., Ogunleye, A. B., & Kareem, R. O. (2016). Possible enhancement of nutrients and antioxidant capacity of two tropical fruits by UV radiation treatment. Advance in Life Science and Technology, 46, 80–85. Oliveira, M., Abadias, M., Usall, J., Torres, R., Teiidó, N., & Viñas, I. (2015). Application of modified atmosphere packaginf as a safety approach to fresh-cut fruits Anda vegetables–A review. Trends in Food Science and Technology, 46(1), 13–26. https://doi.org/10.1016/j.tifs.2015.07.017 Park, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109–112. https://doi.org/10.1016/j.postharvbio.2014.09.013 Perkins-Veazie, P., Collins, J. K., & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47, 280–285. https://doi.org/10.1016/j.postharvbio.2007.08.002 Pinto, E. P., Perin, E. C., Schott, I. B., da Silva Rodrigues, R., Lucchetta, L., Manfroi, V., & Rombaldi, C. V. (2016). The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv.'Concord'). Postharvest Biology and Technology, 120, 84–91. https://doi.org/10.1016/j.postharvbio.2016.05.015 Raigón, M. D., Prohens, J., Muñoz-Falcón, J. E., & Nuez, F. (2008). Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. Journal of Food Composition and Analysis, 21(5), 370–376. https://doi.org/10.1016/j.jfca.2008.03.006 Ribeiro, C., João, C., & Bartolommeo, A. (2012). Prospects of UV radiation for application in postharvest technology. Emirates Journal of Food and Agriculture, 24(6), 586–597. https://doi.org/10.9755/ejfa.v24i6.14677 Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D., & Ye, X. (2013). Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology, 76, 50–57. https://doi.org/10.1016/j.postharvbio.2012.09.006 Sikora, M., & Świeca, M. (2018). Effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts. Food Chemistry, 239, 1160–1166. https://doi.org/10.1016/j.foodchem.2017.07.067 Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent. Methods in Enzymology, 299, 152–153. https://doi.org/10.1016/S0076-6879(99)99017-1 Wang, D., Chen, L., Ma, Y., Zhang, M., Zhao, Y., & Zhao, X. (2019). Effect of UV-C treatment on the quality of fresh-cut lotus (Nelumbo nucifera Gaertn.) root. Food Chemistry, 278, 659–666. https://doi.org/10.1016/j.foodchem.2018.11.102 Yuan, J., Wang, H., Li, Y., Chen, L., Zheng, Y., Jiang, Y., Tang, Y., Li, X., Li, J., & Wang, L. (2022). UV-C irradiation delays browning of fresh-cut "Fuji" apples. Journal of Food Processing & Preservation, e16338. https://doi.org/10.1111/jfpp.16338 Volume46, Issue11November 2022e16986 ReferencesRelatedInformation