亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multilevel Noise Contrastive Network for Few-Shot Image Denoising

计算机科学 降噪 人工智能 模式识别(心理学) 卷积神经网络 噪音(视频) 特征(语言学) 特征提取 计算机视觉 图像(数学) 语言学 哲学
作者
Bo Jiang,Jiahuan Wang,Yao Lu,Guangming Lu,David Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-13 被引量:9
标识
DOI:10.1109/tim.2022.3189739
摘要

In recent years, most denoising methods based on deep Convolutional Neural Networks heavily rely on massive noisy-clean image pairs. Collecting massive noisy-clean image pairs is expensive and not practical in real scenes. Currently, few-shot learning has been applied to many areas to cope with the absence data. The few-shot learning, however, in image denoising severely suffers from domain gap problems, including dataset domain gap and feature domain gap, especially for the real noisy images. Therefore, this paper proposes a Multi-level Noise Contrastive Network (MNC-Net) performing few-shot image denoising. MNC-Net consists of two training stages: i) using contrastive learning to self-supervise the training of Multi-level Noise Contrastive Learner (MNCL) on the pure synthetic noisy images with multiple Gaussian noise levels to ease the acute dataset domain gap, and ii) features generated by the MNCL on limited data are fused to the second stage and alleviate the feature domain gap using our proposed denoising network. Specifically, the MNCL consists of a Contrastive Feature Extractor (CFE) and a Contrastive Feature Projector (CFP). MNCL learns the rich and complex content-invariant degradations and general multiple-level noise representations. The denoising network in the second stage is composed of Guider Feature Encoder (GFE) and Adaptive Denoising Decoder (ADD). The GFE uses contrast features from CFE to guide the produced representations on the specific input noisy images. Then, such output features are fed into the ADD to adaptively denoise the noisy images on the corresponding noise distribution. To our best knowledge, this work is the first attempt to jointly use the few-shot learning and contrastive learning in the deep denoising field. Extensive experiments on CBSD68, Kodak24, Set12, SIDD, and DND show that our method achieves promising denoising performances in the absence of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助啊哈哈哈采纳,获得10
1秒前
良辰完成签到,获得积分10
15秒前
17秒前
啊哈哈哈发布了新的文献求助10
24秒前
25秒前
活力鸿发布了新的文献求助10
30秒前
钮小童完成签到 ,获得积分10
30秒前
一杯美式发布了新的文献求助10
45秒前
大个应助科研通管家采纳,获得10
49秒前
田様应助秋刀鱼不过期采纳,获得10
1分钟前
1分钟前
1分钟前
ABC发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
大爷醒醒啊完成签到,获得积分10
2分钟前
扬大小汤发布了新的文献求助10
2分钟前
Lucas应助扬大小汤采纳,获得10
2分钟前
扬大小汤完成签到,获得积分10
2分钟前
SDNUDRUG完成签到,获得积分10
2分钟前
脑洞疼应助科研通管家采纳,获得30
2分钟前
2分钟前
3分钟前
3分钟前
小伍完成签到,获得积分10
3分钟前
3分钟前
小伍发布了新的文献求助30
3分钟前
3分钟前
qq完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
WerWu完成签到,获得积分10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
爆米花应助科研通管家采纳,获得10
4分钟前
汉堡包应助乐生采纳,获得50
4分钟前
乐乐应助泡面小猪采纳,获得10
5分钟前
愤怒的豆腐人完成签到,获得积分10
5分钟前
灵溪完成签到 ,获得积分10
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784100
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299643
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989